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Online reviews increase consumer visits, increase the time spent on the website, 

and create a sense of community among the frequent shoppers. Because of the 

importance of online reviews, online retailers such as Amazon.com and eOpinions 

provide detailed guidelines for writing reviews. However, though these guidelines 

provide instructions on how to write reviews, reviewers are not provided instructions for 

writing product-specific reviews. As a result, poorly-written reviews are abound and a 

customer may need to scroll through a large number of reviews, which could be up to 

6000 pixels down from the top of the page, in order to find helpful information about a 

product (Porter, 2010).  Thus, there is a need to train reviewers to write better reviews, 

which could in turn better serve customers, vendors, and online e-stores. In this Thesis, 

we propose a review recommendation framework to train reviewers to better write about 

their experiences with a product by leveraging the behaviors of expert reviewers who are 

good at writing helpful reviews.  

First, we use clustering to model reviewers into different classes that reflect 

different skill levels to write a quality review such as expert, novice, etc. Through 

temporal analysis of reviewer behavior, we have found that reviewers evolve over time, 

with their reviews becoming better or worse in quality and more or less in quantity.  We 

also investigate how reviews are valued differently across different product categories.  

Through machine learning-based classification techniques, we have found that, for 
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products associated with prevention consumption goal, longer reviews are perceived to 

be more helpful; and, for products associated with promotion consumption goal, positive 

reviews are more helpful than negative ones.  

In this Thesis, our proposed review recommendation framework is aimed to help 

a novice or conscientious reviewer become an expert reviewer. Our assumption is that a 

reviewer will reach the highest level of expertise by learning from the experiences of his 

or her closest experts who have a similar evolutionary pattern to that of the reviewer who 

is being trained. In order to provide assistance with intermediate steps for the reviewer to 

grow from his or her current state to the highest level of expertise, we want to 

recommend the positive actions—that are not too far out of reach of the reviewer—and 

discourage the negative actions—that are within reach of the reviewer—of the reviewer’s 

closest experts. Recommendations are personalized to fit the expertise level of reviewers, 

their evolution trend, and product category. Using the proposed review recommendation 

system framework we have found that for a random reviewer, at least 80% of the reviews 

posted by closest experts were of higher quality than that of the novice reviewer. This is 

verified in a dataset of 2.3 million reviewers, whose reviews cover products from nine 

different product categories such as Books, Electronics, Cellphones and accessories, 

Grocery and gourmet food, Office product, Health and personal care, Baby, Beauty, and 

Pet supplies. 
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Chapter 1         
Introduction 
 

When consumers shop online, they go through product information to evaluate different 

products, and have access to number of product reviews (Mudambi and Schuff, 2010). 

Online consumer reviews are provided in addition to product description and share 

consumers’ personal usage experiences with the product. The buyer-created review 

information compliments the seller-created product attribute information making online 

consumer reviews work effectively as sales assistant to help consumers identify the 

products that best match their usage conditions (Chen and Xie, 2008).  

Online consumer product review is an emerging electronic market phenomenon 

which is playing an important role in deciding consumers’ purchase behavior (Chen and 

Xie, 2008). The existence of consumer reviews on a website has proved to increase the 

usefulness and social presence of the website (Kumar and Benbasat, 2006). Online 

reviews tend to increase consumer visits, increase the time spent on the website, and 

create a sense of community among the frequent shoppers. Because of the importance of 

online reviews, online retailers such as Amazon.com and eOpinions even go as far as 

posting detailed guidelines for writing reviews as helpful consumers reviews are 

perceived to be highly valuable (Mudambi and Schuff, 2010).  

However, though these guidelines provide instructions on how to write reviews, 

reviewers are not provided instructions for writing product-specific reviews—that is, 
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what kind of information is perceived as more helpful for which product. Furthermore, it 

may be costly to treat reviewers as writers who need practices and time to become good 

at writing reviews. 

1.1 Background  

Meanwhile, for a very long time recommendation systems have been providing 

recommendations on web pages, videos, movies, music and books (McDonald et al., 

2000). Recommendation systems have been helping customers to purchase products from 

E-commerce website (Schafer et al., 2001). High volume of digital data has increased the 

need of recommendation systems on different types of digital content. 

On the basis of what is recommended, there are different types of 

recommendation system found in web today- 1) expertise recommenders, 2) item 

recommenders, and 3) action recommenders.  Expertise recommender (McDonald et al., 

2000) is a system that helps users to locate experts in domain specific task and make 

referrals based on the users’ expertise rating. The system has been tested to recommend 

experts in Tech Support system. Similarly, Expert Finder (Vivacqua et al., 2000) is an 

agent that classifies users as experts and novices by analyzing documents created by them 

in their day-to-day life. It has been used to segregate Java Programmers and assign 

numerical value to define their level of expertise. Novice users can then ask questions to 

experts.  Item recommenders, as the name implies, recommend items to users. These are 

the most popular type of recommender systems especially used by e-commerce websites. 

These systems analyze users’ purchase history and recommend items that are most 

similar to previously bought items.  Action recommenders are the recommendation 

systems that produce suggestions or advices to customers in the form of actions or plans. 
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The recommended actions or plans are varied with types of customers. ‘Role Models’ 

approach (Yang et al., 2002) is used in which failed customers are recommended to 

perform similar actions as active customers or role models. For example, in banking 

system, for the rejected loan applicants the system recommends certain actions that will 

increase their chances of receiving loan in next attempt. The recommended actions will 

move the rejected applicant more closely to the accepted applicant. 

In this thesis, we focus on action recommenders for recommending actions to 

improve buyers ability to write helpful reviews. For this, we first find role models. These 

are reviewers who have the skills to write most helpful reviews. Before going into the 

problem of finding these so-called role models, we need to look at user modeling.  

 Computer user modeling is the process of gathering information about users, and 

using the information to adapt the underlying system to the users’ needs (Kobsa, 2001). 

User modeling caters to individual user needs and interests, which is especially useful for 

complex, widely available software (Fisher, 2001). User modeling has been an important 

part of recommendation systems to suggest products to users and is widely used in 

commercial websites like Netflix, Amazon.com and so on (Jameson, 2009). These 

websites infer user interests or taste on products and make suggestions accordingly. User 

modeling stores information about individual users and uses this information to assist the 

system in “serving the user better” (Biswas and Robinson, 2010). 

 For example, one traditional application of user modeling is scheduling meetings 

or appointments (Gervasio et al., 2005; Jameson, 2009). The system assists in the task of 

entering these meeting schedules in users’ calendar, based on the users’ preferences on 

meeting types, times and locations. The main goal of these systems is to learn about users 
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and help them save time and effort to perform daily tasks. Another similar example 

application of user modeling is a multimedia conversation system that helps to search real 

state based on users’ personal and financial preferences  (Zhou & Aggrawal, 2004). The 

conversation between system and users help to gather information regarding users’ 

preferences on real state. These diverse user queries are used to generate response 

tailored for the specific user. In both these examples, the system first models users from 

the past or current interactions with the system and then serves the users based on their 

tastes or preferences.  

In this thesis, we use user modeling to find and understand different models of 

reviewers based on their characteristics. We then interpret each model based on their 

expertise level measured by the perceived helpfulness of their reviews. Further, each type 

of reviewers is further analyzed to understand how their expertise evolve over years. 

With the knowledge of expertise level and their evolution, we develop a framework for 

recommending actions to help novice reviewers write better reviews by performing 

similar actions as expert reviewers. 

1.2 Motivation 

The main goal of our thesis is to perform user analysis on reviewers to understand their 

behaviors and how those behaviors change with time, and develop a framework for a 

recommendation system for helping reviewers.  We aim to explore the possibility of 

training reviewers in a cost-effective way to better write about their experiences with the 

product by leveraging the behaviors of expert reviewers who are good at writing helpful 

reviews. Training reviewers to write better reviews is important in two ways. First, better 

reviewers write better reviews and thus it would reduce the number of bad reviews.  
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Second, reviewers receiving training could become better reviewers faster than someone 

without the training.  

Reducing the number of bad reviews is beneficial to all involved parties- 

customers, vendors, and Amazon.com. Current state-of-art suggests that, for example, on 

Amazon.com, to find product information customers have to scroll through a large 

number of reviews which could be up to 6000 pixels down from the top of the page 

(Porter, 2010). This suggests that customers are required to invest more time to search 

reviews that provide required product information and help them make purchase decision. 

Hence there is a need for Amazon.com to discourage bad reviews and encourage good 

reviews in order to save customers’ product search time and provide better user 

experiences.  

Further, to facilitate customers find better reviews quickly and with ease, Amazon 

has been running its Vine program since 2007. This program invites trusted customers to 

become Vine voices based on their reviewer rank, which is a reflection of the quality and 

helpfulness of their reviews as judged by other Amazon customers (Puranam et al., 

2014). Amazon.com promotes the reviews written by Vine members by posting them on 

the top of reviews chart and encouraging other customers to read them. Although Vine 

program passively trains customers to review their own usage experiences by exposing 

them to Vine voices who are the best reviewers of Amazon.com, it doesn’t provide 

insights on actions that can lead to quality review. An illustration by examples of step-by-

step actions that novices should adhere to in order to write better reviews can speed up 

this training process.  
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Training novice reviewers to learn to write quality reviews faster is beneficial to 

vendors who use Amazon.com as a platform to launch new products. When new products 

are introduced, the number of reviews are few, and the impact of these initial reviews are 

even more significant. More specifically, the impact of online reviews on its sales is 

maximum when the product is new and the impact decreases as the product ages over 

time (Hu et al., 2008). Thus, it is sub-optimal to have novices review new products as 

they may not provide the product information or even worse they may write bad reviews 

without explaining it in details. The sooner the reviewers are trained to write quality 

reviews, the better it is for the sales of new products.  In addition, when launching new 

products on behalf of participating vendors, Amazon.com provides Vine members with 

free products submitted to the program by those vendors (Puranam et al., 2014).  

However, there is a limited number of Vine members. Hence it may be risky for vendors 

to rely on just those Vine members to provide reviews on new products as their products 

might go to the wrong reviewers. Therefore it becomes more important to train novice 

reviewers faster to write quality reviews specially when they are expected to review a 

new product.  

Therefore, there is a need to train novice reviewers to write better reviews for 

better serving customers, vendors, and online e-stores such as Amazon.com but it hasn’t 

been addressed so far. Current state-of-the-art suggests that reviewers write product 

reviews based on their own ability to articulate their experiences with the product 

(Dellarocas et al., 2010). Amazon.com, for example, does not manage reviewers in any 

tangible way that is to say reviewers are acting on their own ability (Porter, 2010). It may 

be prohibitively costly to treat each reviewer as a writer and train them with proper 
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review-writing skills. Implementation of the system that we envision in this Thesis is a 

cost effective approach to train reviewers so they do not have to rely on their individual 

judgment on what product information to share or how to present product information for 

writing helpful reviews. Implementation of our system incurs no monetary cost on the 

part of customers or vendors. The problems of developing this framework is detailed in 

Section 1.3. 

1.3 Problem statement 

In this thesis, we focus on two sub-problems of developing a framework to provide action 

recommendations to reviewers to help them write quality reviews.  The first sub-problem 

is to differentiate reviewers based on the quality of their reviews to identify, for example, 

reviewers with high quality reviews as expert reviewers and those with low quality 

reviews as novice reviewers.  The second sub-problem is to devise an approach to 

leverage expert reviewers’ behaviors to help train novice reviewers effectively and 

efficiently. 

The first sub-problem of distinguishing reviewers into different classes is based 

on their ability to write quality reviews. There are many problems within this sub-

problem such as: (1) defining review quality, (2) defining review quality based on 

product type, (3) distinguishing expert reviewers from other reviewers, and (4) finding 

different classes of reviewers. The review quality is a reflection of review credibility and 

persuasiveness. The persuasiveness of a review largely depends on how users perceive 

online reviews. Persuasiveness of review can be discussed from two sides (1) the retailer 

perspective and (2) customer perspective. From the retailer perspective, a review is 

considered of good quality if it increases product sales by convincing customers to 



www.manaraa.com

 8 

purchase the product (Chevalier and Mayzlin, 2006; Lee et al., 2008). From the 

customer perspective, a review is considered of good quality if it helps them to make an 

informed decision which may or may not lead to the purchasing of product. From both 

retailer and customer perspective, review quality is subjective and therefore difficult to 

quantify. The problem of quantification of review quality is further aggravated when 

product type is considered. The customer perception of review quality may be different 

based on product types as customers tend to search for different information based on 

product types. For example, customers look for different information when searching 

products that are readily available compared to the products scarcely available in the 

market (Dellarocas et al., 2010). Also, based on the pre-consumption goal of customers, 

the expectations from reviews could be different (Nelson, 1970). Therefore reviews 

should serve different purpose depending on the product type such as hit or niche, search 

or experienced, etc. In this thesis, we try to solve the problem of categorization of  

products into different types and examine salient review features that improve the review 

quality for different product types. Moreover, it is difficult to distinguish expert reviewers 

from other classes of reviewers. Should the expertise of reviewers be measured entirely 

from the review quality or other features such as reviewing frequency, active period, 

product type and so on? Given the large number of reviewers and even larger number of 

reviews, the task of differentiating reviewers into different classes becomes complex. 

Also, how many classes of reviewers should be labeled? How do we come up with the 

threshold that distinguishes one class from another? This Thesis tries to answer these 

questions. 



www.manaraa.com

 9 

The second sub-problem that we will investigate in this Thesis is devising an 

approach to leverage expert reviewers’ behaviors to help train novice reviewers 

effectively and efficiently. There are many issues within this sub-problem such as- (1) 

defining expert reviewers’ behavior, (2) choosing the reviewers class whom to make 

these recommendations, (3) developing ways to make recommendations, and (4) making 

recommendation process effective and efficient. Reviewers perform different actions that 

make them experts ranging from writing few high quality review consistently, or writing 

many but both high and low quality reviews that would average to high quality review. 

There seems to be no pre-defined course of actions which makes a reviewer expert or 

novice. So the task of defining experts’ actions requires addressing these issues. 

Furthermore, the task of making recommendations effectively and efficiently requires 

answering two other questions: (1) which reviewer should be recommended or in other 

words, how do we find reviewer who requires training, and (2) what kind of actions 

should be recommended. The task of choosing reviewers to direct recommendations to is 

tricky as we need to answer questions such as “do we recommend actions to someone 

who is motivated to review and lacks reviewing skills?” or “do we recommend actions to 

someone who is not interested and lacks reviewing skills?”. We need to develop 

strategies to first differentiate reviewers’ motivation level and then prioritize one over 

another. Additionally, recommended actions might be different based on both reviewers’ 

motivation and skill level as well as product types. Intuitively, the actions recommended 

to new and inexperienced reviewer should be more basic and elaborate than old and 

experienced reviewer. Additionally, recommended actions could be product type specific 

i.e.,  certain kind of information is perceived as more helpful for certain products.  This 
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Thesis tries to provide solutions to the problems of understanding the skill, experience 

and motivation level of reviewer and then device appropriate actions to recommend in 

order to help them review better . 

1.4 Solution Approach  

In this section we discuss the solutions of the two sub-problems: (1) differentiating 

reviewers based on the quality of their reviews to identify different classes of reviewers, 

and (2) devising an approach to leverage expert reviewers’ behaviors to help train novice 

reviewers effectively and efficiently.  

As discussed in Section 1.2, one of the motivations of our research is to train 

reviewers to write quality reviews in order to facilitate customers find good reviews 

quickly and with ease. We focus on customers perception of review quality. Customers 

use online product reviews provided by consumers of the product as a major information 

source to evaluate the product quality (Hu et al., 2008). Amazon.com implements a 

voting system in which customers rank a review if it helped them to know more about the 

product and decide on buying the product or not. The proportion of helpful votes reflects 

how content customers are with the review and if it helped them in making purchase 

decision (Chen et al., 2008; Korfiatis et al., 2012). The review quality can be measured 

by the proportion of helpful votes received by the review (Chen et al., 2008). Since the 

customer perspective of review quality is important to meet our motivation, we use 

review helpfulness as a measure of review quality. Additionally, to understand how 

reviews are valued differently across different products, we look into the relationship 

between review quality measured in terms of helpfulness, with other review features such 

as its rating score, length, and so on for diverse product categories. This analysis helps to 
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find salient features of quality review for each product category. Further, based on the 

degree of review quality we distinguish expert reviewers by using clustering algorithm. 

The clustering algorithm divides reviewers into optimal number of classes based on their 

behaviors such as number of reviews they have posted, degree of helpfulness of their 

reviews, rating score, length of their reviews and their active period as reviewers. Each 

class is interpreted and labeled based on their motivation and skill level.  

We use decision tree to classify reviewers into appropriate classes. The class of a 

reviewer reflects the motivation and skill level of the reviewer. All classes of reviewers 

are observed over time and over different product types. The temporal analysis of 

reviewers shows the evolution of each class of reviewers over time which helps to 

understand the learning curve of each class of reviewers with respect to their skills for 

writing good quality reviews. A reviewer belonging to a class that represents low review-

writing skill level is chosen to be trained. The reviewer is trained by first choosing his or 

her closest experts and then using the experts’ actions to make appropriate action 

recommendations. The recommended actions also focus on product specific review 

writing-style to produce quality reviews by following the action sequence of the closest 

experts.  

1.5 Contributions  

This research makes several contributions: 

 It creates user models of reviewers with different skill level for posting quality 

reviews. Each model of reviewers have unique features and exhibit different 

behaviors. These models can be analyzed by researchers to address a variety of 

problems related to reviewer behaviors in e-commerce. 
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 It develops a classifier model that predicts the expertise of a given reviewer. Since 

the classifiers are product-specific, the prediction of reviewers’ expertise is 

accurate. These classification models can be used by e-commerce websites to 

assess a reviewer’s ability to write quality reviews in real time.  

 Reviewers are observed for a length of time to understand their evolution. For 

some reviewers, evolution may indicate improvement in their reviewing skills 

whereas for others it may indicate the opposite. These findings give much insights 

on how to interact with reviewers in the future for generating action 

recommendations. 

 It lays the groundwork for the construction of an action recommendation system 

for reviewers. The actions performed by an expert reviewer can be recommended 

to reviewers who have poorer reviewing skills. A real time implementation of this 

framework could be a highly beneficial for customers and vendors in any 

ecommerce websites. 

1.6 Overview 

The remaining part of this Thesis is organized as follows. 

Chapter 2 describes related work and background, overviewing related work in 

the fields of recommendation systems in Section 2.1; user modeling and its applications 

in Section 2.2; the process of user modeling in Section 2.3 that covers various 

unsupervised approaches for pattern recognition (in Section 2.3.1) and supervised 

approaches for validation and interpretation (in Section 2.3.2); and closes with discussion 

on sentiment analysis in Section 2.4. 
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Chapter 3 describes methodology. It begins in Section 3.1 describing the method 

by which reviewers are modeled. This includes defining review quality using various 

features set and then modeling reviewers into different classes based on their review 

quality. Section 3.2 talks about building recommendation system framework by analyzing 

reviewer evolution trends and review sentiment.  

Chapter 4 talks about understanding reviewers. It describes how data on which the 

reviewer models are based was collected in Section 4.1, how the collected data was 

preprocessed in Section 4.2, how the data clustering was applied to create reviewer 

models in Section 4.3, and finally how the reviewer-classification for the models were 

built in Section 4.4. 

Chapter 5 proposes recommendation system framework. Section 5.1 presents how 

different classes of reviewer evolve over time in regard to their reviewing skill. Section 

5.2 talks about sentiment analysis highlighting how review sentiment differs from one 

class of reviewers to another. Section 5.3 details review recommendation system 

framework that is based on the reviewer evolution to generate review recommendations.  

Finally, Chapter 6 draws conclusions from various experiments regarding 

reviewer classes and their evolution. Section 6.1 focuses on conclusions and Section 6.2 

talks about future works. 
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Chapter 2                         
Related Work & 

Background 
 

In this chapter we cover related work in recommendation systems and user modeling. We 

argue that we apply user-modeling framework to solve a problem not traditionally 

addressed by the field: the detection and prediction of different classes of reviewers based 

on their expertise level to write helpful online reviews, and observation of evolution in 

each class using temporal analysis of the perceived helpfulness of their reviews and using 

this information to recommend actions to facilitate reviewers write better reviews.  

We propose a framework for developing a recommendation system that provides 

action recommendations to reviewers on how to write better reviews that serves 

customers to help them make informed purchase decisions. Therefore we cover 

recommendation systems and their usage patterns. To better understand reviewer 

behavior, we also utilize machine learning algorithms to create user models, so we 

describe the basic concepts related to user modeling and its application. We cover various 

steps of the user modeling process that is crucial for creating user models that accurately 

represent reviewers. Additionally, we perform opinion mining in product reviews to 

understand the tone of reviews that are helpful to other customers. In this light, we cover 

the state-of-art of opinion mining tool and their applications as well in this Chapter.  
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2.1 Recommendation systems 

Recommendation systems have been used to provide recommendations on items such as 

webpages, videos, movies, music, and books (McDonald et al., 2000). Such 

recommendations are usually personalized in which case the recommended items are 

different for different users or user groups (Ricci et al., 2011). However the 

recommendations could also be non-personalized which are generally easy to generate 

and are featured in newspaper or magazines. Amazon.com (Linden et al., 2003; Ricci et 

al., 2011) is an e-commerce website which tries to personalize the online store for each 

customer such as suggesting programming language for software engineers or baby toys 

for new parents. To generate personalized recommendations for each customer, 

Amazon.com keeps track of the customer’s purchase history and items rated by the 

customer. There are diverse recommendation algorithms that are applied to generate a list 

of recommendations. Collaborative filtering (cite) is one of the most popular 

recommendation algorithm that provides recommendation in a two-step process: (1) it 

calculates the level of similarity between users based on their rating for common items, 

and (2) then it predicts the user preference of particular item by calculating the weighted 

summation of rating provided by the most similar users for that item (Herlocker et al., 

2004).  

Pham et al., (2014) talks about an expert-based recommendation system which 

recommends movies to users based on experts’ opinions.  The recommendation list 

consists of movies that have high ratings from experts. One of the crucial parts of this 

system is measuring the expertise level of users to determine the set of experts. The set of 

experts are different or specific for each user because each user has a different set of 
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preferences. For example, for a user who prefers action movies in the genre of James 

Bond, his or her set of experts will have expertise in this particular area.    

Recommendation systems are not limited to providing recommendations on items 

but they also produce suggestions or advices to customers in the form of actions or plans. 

The recommended actions or plans are varied with types of customers. Service-based 

corporations try to attract new customers by recommending actions that will result in 

some kind of benefit for the customers. They try to recommend various actions for failed 

or low profile customers in order to make them more active or high profiled customers.  

As stated in Chapter 1, action recommendation systems use ‘Role Models’ approach 

(Yang et al., 2002) in which failed customers are recommended to perform similar 

actions as active customers or role models. The recommendation is achieved in three 

steps (Yang et al., 2002). First, data mining techniques are used to find “good” or 

“positive” customers that are active and are accepted into good class and the “bad” or 

“negative” customers who are not. Second, from the set of positive customers a number 

of representative cases of customers that can be used as “role models” for the rest are 

selected. Third, various actions are recommended to “negative” customers that will 

switch them into “positive” customers.  

Our approach extends the work of Pham et al., (2014) for finding experts 

reviewers and Yang et al., (2002) for providing recommendations in the form of actions 

that will help  “naive” reviewers to switch into “expert” ones. Additionally, we study user 

evolution to find how reviewers improve over time and make action recommendations 

based on their current expertise level.  As the first step, it is important to distinguish 

reviewers correctly that is reflective on the ability of reviewers to write helpful reviews. 
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To achieve this goal, we learn about user modeling and its applications covered in 

Section 2.2. 

2.2 User modeling and its applications 

User modeling is used to create user models in which observable information of a user is 

mined to infer unobservable information about a user (Frias-Martinez et al., 2006). User 

models can contain diverse information about a user or user groups such as user’s domain 

knowledge, user’s goals and plans, user’s belief about the domain, specific preferences or 

interests, and user’s attributes (Paris, 2015). For example, in a system that is acting as a 

librarian, user attributes could be “feminist” or “religious”.  

There are two distinct approaches of creating user models: (1) the user-guided 

approach and (2) the automatic approach (Fink et al., 1998). In the user-guided approach, 

also referred as the explicit approach, models are directly created using the information 

provided by the users themselves whereas in the automatic approach, the model creation 

process is controlled by a system which is unknown to user. Usually a user-guided 

approach is not preferred as users are unlikely to invest time to provide personal 

information unless it is compulsory, even though it is more direct and could obtain 

targeted response to specific questions.  Furthermore, users may provide incorrect or 

inaccurate information regarding their interests or skills. In the automatic approach, also 

referred as the implicit approach, user information is derived from naturally occurring 

interactions between system and the user that user would have performed any way, 

without investing any additional time (Jameson, 2009). For example, the navigation 

pattern of users could help infer the behavior and interests of various subgroups of users 

based on the pages or categories they visited during their interaction with a website 
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(Dalamagas et al., 2007). User modeling is applied in diverse systems in order to model 

users to understand them better and eventually use this information to better serve them.  

An example application of user modeling is the automation of spoken dialogue 

systems to individual users such as offering details about train arrival or flight departures 

via phone (Jameson, 2009). The users of these systems could be novice or experienced 

based on how experienced they are with the system. The dialogue systems should 

recognize these users and serve them accordingly: extensive and thorough explanation for 

novice users, and simple and quick sessions for experienced users (Jameson, 2009). Thus, 

a major goal of these systems is to perform user modeling to identify users’ experience 

level in order to assist them better. Identification of user experience level is a difficult 

task and various systems use different measures ranging from simple to complex, to 

perform user experience identification. In spoken dialogue system, user models are 

represented based on the level of difficulty user faces on speech recognition when 

proceeding with specific dialogue (Litman and Pan, 2002). Many systems deploy a 

simple measure of identifying a new user as a novice whereas an old user who has 

interacted with the system in the past as experienced. This approach may be a good 

solution to new user cold-start problem. However, for amazon reviewers this may not 

work as McAuley (2013) points that “some users may already be experienced at the time 

of their first review”. Therefore, reviewers should be observed for a certain period of time 

before labeling them as novice or expert in a review recommendation system.  

A similar example is Kyoto City Bus Information System which deploys three 

measuring criteria for user model creation based on their dialogues with the system: (1) 

user’s skill level in terms of using the system, (2) user’s knowledge level in terms of 
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domain expertise, and (3) user’s desire to complete the conversation quickly referred as 

urgency level (Komatani et al., 2005). Pieces of evidence such as the amount of 

information specified in each utterance by user; user’s knowledge of exact bus stop 

location names; user’s frequency of interruption before the system completed an 

utterance, etc. are collected implicitly to measure user’s skill level. Similar to Kyoto City 

Bus Information System, in review recommendation system we can measure reviewer’s 

expertise level by the amount information they post, product-specific keywords they use, 

review length, etc. 

Another application is Web-based Intelligent Tutoring Systems (ITS) that 

performs user modeling to understand the knowledge and learning abilities of students by 

observing their interaction with the system (Suraweera et al., 2004). Student modeling or 

learner modeling is performed by observing various aspects of  user characteristics: (1) 

user’s domain knowledge based on the past and current interactions between the user and 

the system, (2) user’s ability or motivation to learn, and (3) user’s approach or the way of 

dealing a problem in hand (Jameson, 2009). For example in SQL-Tutor, based on the 

answers provided by student, the system provides feedback and helps the student 

determine a problem the student should attempt next. The student progress is measured 

implicitly based on his or her answers to perform student modeling (Jameson, 2009). 

Similar approach may be used in review recommendation framework to understand the 

progress a reviewer is making over time. However, reviewers are likely to consume and 

review diverse products ranging from science fiction novels to garment products which 

makes the progress harder to evaluate. Therefore this approach maybe suitable to 
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measure the progress of reviewers who tend to review similar products for example, 

super hero movie fans, gamers, book lovers, etc.  

User modeling can be used to create reviewer models with different level of 

reviewing expertise. Paris (2015) defines a naïve user as one “who doesn’t know about 

specific objects in the knowledge base and doesn’t understand the underlying basic 

concepts” whereas an expert user as one who has domain knowledge and can relate to 

new objects based on his/her domain knowledge. Experts may not necessarily know 

about all the objects but has enough domain knowledge to either infer from a similar 

known object to understand a new object or to ask questions about it. Also a user does not 

have to belong to either an expert or a naïve class rather the user may belong somewhere 

in-between. “The level of expertise can be seen as a continuum from naïve to expert” 

(Paris, 2015). We extend the work of Paris (2015) in defining reviewers as experts or 

novices or any other classes. In Amazon.com, some reviewers have years of experience 

in purchasing and reviewing a specific product type. They know the exact information 

regarding product features or the depth of usage experiences they should share to 

effectively review the product. While other reviewers are relatively new and they may 

have no idea of the kind of information that they should share in their reviews to help 

other consumers.  

2.3 User modeling process 
The process of user modeling is divided into four steps (Frias-Martinez et al., 2006): 

 Data collection 

 Data preprocessing 

 Pattern recognition 

 Validation and interpretation 
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In this thesis, we follow all four steps of user modeling. Data collection is the process of 

gathering the information required for building user models. For our research, we used 

Amazon product reviews that is publicly available for  research purpose. This Amazon 

product review data was collected by performing breadth-first-search on user-product-

review graph until termination by McAuley et al. (2015). The details regarding number of 

users, reviews and products are presented in Table 4.1.  

Data preprocessing involves getting rid of noise and inconsistencies present in the 

data. Data preprocessing also involves checking for impossible or unlikely values and 

missing values (Maglogiannis, 2007). In this phase, information regarding user 

identification and the user interaction with the system are extracted (Frias-Martinez et al., 

2006). In our research we process Amazon product review data to identify various kind 

of data inconsistencies, if any, such as abrupt change in user count or review count. For 

example, the number of reviewers and product increased exponentially from 1997 to 

2003 after which the growth has been more gradual. That 1997-2003 exponential growth 

doesn’t reflect current growth rate, therefore we chose to ignore the unusual growth rate 

and cleaned the data accordingly. After removing inconsistencies, the data is transformed 

and aggregated with regard to reviewer information such as reviewer identity, total 

reviews written by the reviewer, average overall (rating) provided by the reviewer, active 

life (in months) of the reviewer and so on. Details on reviewer information is explained in 

Section 4.3.1. After data preprocessed, we use machine learning approach to recognize 

the patterns in user data which is covered in Section 2.2.1.  

In the validation and interpretation phase, patterns discovered from pattern 

recognition phase are analyzed and interpreted based on the feature values of each 
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patterns (Frias-Martinez et al., 2006). The interpretation involves use of domain 

knowledge and visualization. Validation tests the usability of the knowledge obtained. 

For Amazon.com reviewers, interpretation involves labeling the classes as experts or 

novice based on their feature values. Validation involves training and testing using 

supervised approach.  

2.3.1 Pattern recognition using unsupervised approach  

Pattern recognition is the process in which computer program discovers patterns of the 

objects it has seen before, for example chronological or spatial pattern (Anzai, 2012). In 

other words, “pattern recognition is a process of generalizing and transforming 

representations” (Anzai, 2012). Pattern recognition is performed by various machine 

learning techniques which may be either supervised or unsupervised depending upon the 

dataset. Clustering algorithms such as K-means clustering, X-means clustering, and 

correlation clustering are major examples of unsupervised algorithms whereas classifiers 

such as decision trees, Naïve Bayes classifier, and neural networks are examples of 

supervised algorithms. The choice of using supervised or unsupervised approach depends 

on whether the instances in dataset are labeled or not (Maglogiannis, 2007). If all the 

instances have known label then supervised approach is used and if the instances are 

unlabeled then unsupervised approach is used (Maglogiannis, 2007). For our research, the 

reviewer data has no label and we use unsupervised learning to discover the unknown 

patterns. Amazon.com reviews data contain Average Helpfulness and Average Overall 

which may be used as labels. They are continuous "label", not nominal. Some might 

suggest discretizing the continuous labels to represent different levels of expertise which 

may be interpreted as "label". For example in the case of Average Overall, ratings like: 
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less than 1 star, between 1 and 2 stars, between 2 and 3 stars, between 3 and 4 stars, and 

between 4 and 5 stars as a way to represent different levels of expertise. But we argue 

that expertise does not have to be a 1-to-1 mapping with Average Overall, or with 

Average Helpfulness rather expertise is a function of multiple features including Average 

Helpfulness, Average Overall, Active Month, Review Frequency and so on. Hence we 

consider the reviewer data as unlabeled and have to resort to unsupervised learning to 

discover reviewer expertise clusters.  

A clustering algorithm, which is an unsupervised learning procedure, groups a set 

of objects, i.e., items or users in such a way that similar objects are grouped within a 

same group and are dissimilar to the objects in another group (Gan et al., 2007). 

Similarity coefficients are used for quantitatively describing the similarity between two 

clusters. For numerical data similarities between two objects are measured using distance 

metrics like Minkowski distance, Mahalanobis distance, and average distance or 

combination of these distances (Gan et al., 2007). Minkowski distances are the standard 

metrics for geometrical problems (Strehl et al., 2000). The advantages of using 

Minkowski distances are that they are easy to compute and allow scalable solutions to 

clustering problem (Gan et al., 2007). 

For two objects, X = (x1, x2 ,…, xn) and Y = ( y1,y2,…,yn), Minkowski distance is defined 

as, 

𝑑(𝑋, 𝑌) = √∑|𝑥𝑖 − 𝑦𝑖|𝑞

𝑛

𝑖=1

𝑞

, 

where n is the dimension of the object and xi, yi are the values of ith dimension of the 

object X and Y respectively, and q is a positive integer. When q = 1, d is Manhattan 
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distance and when q = 2, d is Euclidean distance. Among others Euclidean distance may 

be the most common distance that has been used for numerical data (Gan et al., 2007). 

Cluster analysis has been used widely to understand the target users in diverse 

fields. Clatworthy et al., (2005) reviews number of cases in health psychology where 

cluster analysis is used to address various theoretical and practical problems. Clustering 

is mainly used to identify people or groups at risk of certain medical condition in order to 

assist them with the required medical service (Gan et al., 2007). Clustering has also been 

used in market segmentation research (Wedel et al., 2012).  In market segmentation 

research, clustering is used to assign potential customers to homogeneous groups based 

on various characteristics such as cultural, geographic, demographic, and socio economic 

factor. For Amazon.com reviewers, pattern recognition involves clustering of similar 

reviewers into different classes with interpretable differences. By similar reviewers, we 

mean reviewers who show similarities in their characteristics such as reviewing 

frequency, review text length, review rating (overall), active period, and review 

helpfulness.  

As stated earlier K-means clustering, X-means clustering, and correlation 

clustering are some of the major clustering algorithms employed for pattern recognition 

for unlabeled data. K-means clustering is the most popular and simplest hierarchical 

clustering algorithm since it was proposed 50 year ago (Jain, 2010). Its popularity is 

largely due to the ease of implementation and empirical success. However there are three 

major shortcomings of K-means algorithm such as (1) poor computational scalability, (2) 

the number of clusters denoted by K has to be supplied as a parameter, and (3) local 
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minimum convergence (Pelleg et al., 2000). X-means clustering algorithm overcomes the 

first two shortcomings which makes X-means algorithm the best fit for our dataset.  

There are some open questions about our research goal that should be understood 

in order to choose suitable clustering algorithm for our dataset which contains all kinds of 

reviewers ranging from new to experienced and novice to experts. Two important 

considerations are: 

 Is there any fixed number of clusters that reviewers should identify to? No. 

Reviewers can be grouped into any number of clusters depending upon the 

inherent patterns in the reviewer features. The number of clusters may depend on 

how diverse reviewers are. We don’t want to impose any restrictions on how 

many clusters of reviewers should be created. The clusters will be interpreted 

based on their expertise level ranging from novice to expert. The level of 

expertise is seen as a continuum from novice to expert (Paris, 2015), thus we 

cannot predetermine the number of clusters. 

 Are computationally slow learning acceptable? The acceptability of slow learning 

algorithm is questionable for two main reasons: (1) large number of online 

reviews and (2) changeable nature of reviewer clusters.  

o Ever increasing number of reviews and reviewers in Amazon.com makes 

it more important to employ computationally faster learning algorithm. 

o Given that clusters are likely to change over time and that new clusters 

will likely be needed after new reviews are posted or new reviewers joins, 

the need to employ faster learning becomes crucial.  
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The X-means algorithm doesn’t require us to provide the number of clusters and is 

computationally efficient which makes it suitable for large datasets (Pelleg et al., 2000). 

Therefore we choose X-means clustering algorithm to perform pattern recognition in 

Amazon.com reviewers. In the end of this phase, a structural description of what the 

system learned about user behavior and user interest is obtained as output (Frias-Martinez 

et al., 2006).  

Note that soft clustering such as fuzzy clustering assigns each data into multiple 

clusters instead of one single cluster (Dunn, 1973). This feature may be particularly 

important in our case because we may want to know the degree or percentage of 

belonging of a reviewer to each of the clusters and provide recommendations to the 

reviewer accordingly. However, X-means also provides confidence interval of each 

reviewer which is a measure of how strongly the reviewer belongs to the cluster. Also, 

similar to K-means, fuzzy clustering should be provided with the number of clusters as a 

parameter. Hence ultimately we choose X-means over fuzzy clustering as X-means 

doesn’t require us to provide the number of clusters for a given dataset.  

2.3.2 Validation and interpretation using supervised approach  

Interpretation is the process of analyzing and interpreting the structures discovered from 

pattern recognition phase (Frias-Martinez et al., 2006). For our research, after performing 

cluster analysis covered in Section 2.2.1, all the instances belong to a certain cluster or 

group. We label these clusters based on their behavior for example a cluster of reviewers 

whose reviews have been highly helpful to other customers are labeled as ‘experts’ 

whereas a cluster whose reviews have not been helpful to other customers are labeled as 

‘novices’.  
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Validation is testing the credibility of the structures discovered from pattern 

recognition phase (Frias-Martinez et al., 2006) and it is usually carried out by (1) creating 

a predictive model and (2) performing model validation of the prediction capability of the 

model. Supervised approach is used to build a predictive model of the class labels based 

on the predictor features (Kotsiantis et al., 2007). The predictive model is a classification 

function that maps input or instances to class labels.  

Classification is the problem of predicting or automatically labeling the class of a 

new instance on the basis of training data, which contains the instances whose classes or 

labels are known. There are many example applications of such classifiers. Beck et al., 

(2003) used a classifier to predict if a student would request for help in an intelligent tutor 

for reading. The training data set contained students description based on their 

interactions with the tutor. The classifier was able to predict if a student would click on a 

particular word for help with 83.2% accuracy. Kwapisz et al., (2013) created a predictive 

model that recognizes the activity a person is engaged in based on the cell phone 

accelerometers. Smart cell phones have acceleration sensors i.e., accelerometers which 

can be used to perform activity recognition such as walking, jogging, sitting, climbing 

stairs and so on. This information is used as a training data to create a predictive model 

for activity recognition. In our research, a classifier is trained using a dataset of reviewers 

who have been classified into different classes based on their expertise level to write 

helpful reviews. After performing cluster analysis, all the instances are labeled and 

belong to a certain class. This data is used as a training set to train a classifier that maps 

unlabeled reviewers to a class. The trained classifier can then be used to predict the class 

of a new reviewer based on their expertise level.  
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There are mainly three different types of classification algorithms such as 

decision trees, neural networks, and ensemble learning. The decision tree approach is one 

of the most widely used approaches to represent classifiers. It originated from the field of 

decision theory and statistics; however, it is very popular in other fields such as data 

mining, machine learning, and pattern recognition (Deepti et al., 2010). Decision tree is a 

classifier in the form of a tree structure where each node is either (1) a leaf node or (2) a 

decision node. A leaf node represents the decision outcomes (class) whereas a decision 

node represents a test to be performed on one or more attributes. A decision node may 

have two or more branches corresponding to a range of values. These ranges of values 

must give a partition of the set of values of the given characteristics. The decision trees 

have many advantages. Decision trees (1) are easy to understand, (2) can be easily 

converted to a set of production rules, and (3) can classify both categorical and numerical 

data, and (4) do not have a priori assumptions about the nature of the data (Zhao and 

Zhang, 2008). However, decision tress have some disadvantages. For instance, they are 

unstable which means that slight variations in training data can result in different attribute 

selection at each point within the tree. This can make a significant change as attribute 

choices affect all the descendent subtrees. Although decision trees have some 

disadvantages, they are suitable for our research for three important reasons: (1) time 

efficiency, (2) easy to understand, and (3) easy conversion into production rules. Unlike 

neural networks, decision trees can be reduced to set of rules which is important in our 

case because we want to find which features are used to perform partitioning at different 

levels. This information will help us see which feature has more predictive weightage 
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over another. In other words, this approach better helps to understand the feature that is 

used for classification of reviewers at different level.  

2.4  Sentiment Analysis 

Sentiment analysis, also referred as opinion mining is defined as “the analysis of people’s 

opinions, sentiments, evaluations, appraisals, attitudes and emotions towards entities such 

as products, services, organizations, individuals, issues, events, topics and their 

attributes” ( Liu, 2012). With a growing availability of user-generated text in social 

media, blogs, and online reviews, there are new opportunities to seek and understand 

users opinions (Bo & Lee, 2008).  

There are many examples of sentiment analysis applications in diverse fields from 

predicting stock trading to election results. Zhang and Skiena, (2010) researched the 

effects of company-related news published in quantitative media like blogs, news, etc. on 

their stock trading. They studied sentiment-oriented equity trading based completely on 

blog/news data. Tumasjan et al., (2010) used sentiment analysis to predict election results 

from Twitter in the context of German federal election. Political sentiment collected from 

tweets that mentioned a political party reflected the offline political landscape. McGlohon 

et al., (2010) used product reviews to rank products or merchants. Reviews tend to 

contain reviewer’s individual biases and the reviewer is likely to carry the same “bias” 

around the products they rate. Sentiment analysis helps to understand these biases then 

measure the true quality of product or merchant. Hai et al., (2011) used sentiment 

analysis to understand opinion features on online reviews. Opinion words represent 

explicit features which are used to identify implicit features in a sentence. Explicit and 

implicit opinion features helps to produce finer-grained understanding of online reviews. 



www.manaraa.com

 30 

Sentiment analysis of online reviews in Amazon.com can help to understand reviewers 

opinion on the consumed product. We extend the work of McGlohon et al., (2010) and 

Hai et al., (2011) of analyzing online reviews. We try to understand the relation between 

the tone of online reviews and their perceived helpfulness. For example, reviews with 

positive opinion may be more effective for certain products whereas negative opinion 

may be effective for other products. This will help to understand how customers perceive 

positive, negative or moderate opinions for different products. 

2.4.1 VADER 

VADER stands for Valence Aware Dictionary for sEntiment Reasoning. It is a simple 

rule-based model for general sentiment analysis tool which was created from a 

generalized, valence-based, human-curated gold standard sentiment lexicon that is 

especially attuned to microblog-like contexts (Ribeiro et al., 2015). VADER combines 

lexical features with five generalized rules to incorporate grammatical and syntactic 

features that humans use to express sentiment intensity such as (1) punctuation namely 

exclamation point, (2) capitalization like use of ALL-CAPS, (3) degree modifiers like 

degree adverbs for example extremely, marginally, and so on, (4) use of contrastive 

conjunction such as but, and (4) examining tri-gram preceding a sentiment-laden lexical 

feature for example “The service here isn’t really all that great” (Hutto & Gilbert, 2014). 

The input to VADER should be in the form of texts such as tweets, reviews, etc. The 

output received from VADER is the measurement of sentiment polarity such as positive, 

negative, and neutral; and sentiment intensity on the scale of -4 to +4. The intensity is 

measured as -1 to -4 for slightly, moderately, very and extremely negative, 0 for neutral, 

and 1 to 4 for slightly, moderately, very and extremely positive. 



www.manaraa.com

 31 

VADER has been proven to perform as well as (and in most cases, better than) 

than eleven other highly regarded state-of-practice tools such as LIWC, ANEW, the 

General Inquirer, SentiWordNet, and machine learning oriented techniques relying on 

Naïve Bayes, Maximum Entropy, and Support Vector Machine algorithms (Hutto & 

Gilbert, 2014). VADER outperforms aforementioned sentiment analysis tools in the 

analysis of social media texts from Tweets, Amazon product reviews, and NY Times 

Editorials (Hutto & Gilbert, 2014). Sentiment analysis using supervised machine learning 

models tend to be more accurate as they are trained using the same corpus which they 

later classify. Socher et al. (2013) talks about a sentiment tree bank, a recursive deep 

model that is reported to outperform the state-of-art  supervised machine learning model. 

However, the results of VADER are on par with sentiment tree bank (Hutto & Gilbert, 

2014). Further, VADER is quick and computationally economical. The lexicon and rules 

used by VADER are directly accessible and can be modified as needed. Among many 

advantages of using VADER, its accuracy of analyzing Amazon product reviews (Hutto 

& Gilbert, 2014) is the main reason we choose to use VADER for performing sentiment 

analysis in our research.  
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Chapter 3                
Methodology 
 

The aim of this thesis, as stated in Chapter 1,  is to differentiate reviewers based on the 

quality of their reviews to identify different classes of reviewers such as expert, novice, 

etc. and to devise an approach to leverage the experts’ behaviors to help train novice 

reviewers effectively and efficiently. In this chapter we present a higher level overview of 

the online review recommendation system framework which utilizes clustering and 

decision tree based classifier to differentiate various classes of reviewers. We cover the 

methodology in two main parts: (1) differentiating reviewers based on review quality and 

(2) recommendation system framework. We first try to understand reviewers by 

analyzing the reviews they have posted so far. Once we have the general idea about 

reviewers behavior and their reviewing skill, we then develop a framework to 

recommend actions to novice reviewers by observing the closest expert behavior.  

3.1 Modeling different categories of reviewers based on review quality 

Reviewers have different reviewing skills based on their expertise. To differentiate 

reviewers expertise level, in other words, to measure reviewers’ skill to write quality 

review, we start by analyzing their reviews. First, we define review quality and find 

factors that affect review quality. Second, we extract feature set that can help us 

understand reviewer behavior. Third, we model the reviewers based on their features to 

determine their expertise level. We will discuss aforementioned three steps in following 

sections.  
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3.1.1  Defining review quality 

 

As stated in Chapter 1, definition of review quality is subjective and depends largely on 

the perception. Review quality has different definitions based on customer and retailer 

perspectives. The feature set that defines review quality may be different from buyer and 

seller perspectives. From a retailer perspective, review quality is a measure of their 

product sales, that is, a review which helps to increase product sales is considered as 

good quality review (Chevalier and Mayzlin, 2006; Lee et al., 2008). However, for our 

research, we focus on customer perspective to define review quality and therefore focus 

on review features that reflect customers perception. As stated in Chapter 1, customers 

consider a review as good quality if it helps them to make an informed decision which 

may or may not lead to the purchasing of product. 

Online retailers including Amazon have been using “helpfulness” as the primary way of 

measuring consumers’ evaluation of a review (Mudambi and Schuff, 2010). In the end of 

each review, Amazon.com asks if the review was helpful to the reader. Helpfulness of a 

review is a number of up-vote the review receives from customers who like the review. 

Helpfulness has been interpreted as a measure of customers’ perceived value in decision-

making process (Mudambi and Schuff, 2010; Otterbacher, 2009).  Therefore helpfulness 

is an important review feature that we use to measure customers perception of review 

quality.  

3.1.2  Feature set 

There are different types of information available in Amazon product reviews which may 

be regarding product, reviewer, and review. When extracting a feature set, it is important 
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to note that the features should somehow help us to assess review quality which in turn 

will assess reviewers’ expertise level.  Below are example features under each category: 

Product information: Information of a product such as product categories like electronics, 

books, etc. As discussed previously in Chapter 2, Zhang et al. (2010) points that product 

reviews are evaluated differently based on consumers’ consumption goals. For some 

products, consumers want to identify useful information for achieving outcomes, referred 

as promotion consumption goal, whereas for other products they want to identify useful 

information for avoiding undesirable outcomes, referred as prevention consumption goal 

(Zhang et al., 2010). The perceived helpfulness of a review may be different for different 

product types. Hence for our research, we include diverse product categories which may 

fall into any of the abovementioned product types. 

Reviewer information: Information related to a reviewer such as reviews count of the 

reviewer, reviewer active life span, etc. Reviews count of a reviewer is calculated from 

the number of reviews posted by the reviewer. Similarly, review posted timestamps are 

used to keep track of reviewer active life span in months. These information represent 

reviewer’s personal behavior and measure the reviewing frequency of an individual 

reviewers. Intuitively, we think that these pieces of reviewer information might help to 

understand reviewers and more accurately assess their expertise level.  For example, a 

reviewer who consistently and regularly contributes helpful reviews should be considered 

more expert than a reviewer who only occasionally contributes helpful reviews. 

Review information: Information related to a review such as review depth, review 

extremity, etc. Review depth is the length of a review and review extremity is the rating 

or overall assigned by reviewer to the product being reviewed. Mudambi and Schuff 
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(2010) point that review extremity and review depth affect the perceived helpfulness of 

the review. Since perceived helpfulness is the measure of review quality, these features 

will affect review quality and in turn affect reviewers’ expertise level. 

3.1.3  Reviewer modeling  

Reviewer modeling is performed to understand the reviewing behaviors of reviewers and 

identify common patterns in their behavior. Reviewer behavior is represented by different 

features listed in Section 3.1.2 which may be related to product, review, and reviewer. In 

order to understand reviewer behavior, we use the following different features of a 

reviewer: (1) total number of reviews posted by them, (2) total time in months they have 

been reviewing, (3) average rating (overall) the reviewer assigns to the product being 

reviewed, (4) average length of reviews posted by the reviewer, and (5) average 

helpfulness received by their reviews so far. Based on the similarity of aforementioned 

features, we find common patterns in reviewers behavior by grouping similar reviewers 

together. 

We analyze each group of reviewers, to understand them better. The average helpfulness 

of each group is the quality of review the group writes. Based on the review quality and 

other features we label each group appropriately. We use average helpfulness as a 

primary measure to differentiate between expert reviewers and novice reviewers. 

However, past research shows that features like product type, review length and review 

extremity also have an impact on helpfulness (Mudambi and Schuff, 2010). Therefore, in 

order to differentiate reviewers, we look beyond helpfulness by analyzing average review 

length, average review extremity and product type as well.   
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3.1.4. Overview 

The goal of modeling different categories of reviewers based on review quality is 

accomplished using different techniques. First, for feature sets extraction, some features 

are readily available such as review post timestamps whereas others are derived from 

existing features such as average review length written by a reviewer is calculated by 

averaging the review text length of all the reviews posted by them. Details of feature 

extraction process is covered in Section 4.3.1. Second, clustering is used to group the 

reviewers into different classes. Clustering of reviewers is followed by labeling each 

reviewer class based on the helpfulness of their reviews and other feature set. Details of 

the clustering process and reviewer class labeling are covered in Section 4.3.2. Third, 

decision trees are used to classify a new reviewer into an appropriate class and validate 

the classification process. Decision trees help us to understand how classification is 

performed and which features are used to perform classification at different levels. 

Classification process using decision tree is covered in Section 4.4. 

3.2 Recommendation system framework  

In this section we present an architecture that recommends actions to novice reviewers by 

learning from expert reviewers. The recommendation system trains novice to follow the 

action sequence of expert in order to improve their reviewing skill. To achieve this, we 

first understand if reviewers change over time with respect to their reviewing skill. If they 

change over time, we want to know how they change. This will provide insights on how 

reviewers are evolving on their own and in which phase of their evolution should our 

recommendation system framework facilitate. Second, we perform sentiment analysis on 

the review text to understand the tone used by different classes of reviewers. We want to 
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understand if different classes of reviewers use a different tone and how that affects on 

review helpfulness. Third, we present an architecture that recommends actions from 

closest expert to train the reviewer who is lagging behind.  

3.2.1 Reviewers evolution 

McAuley and Leskovec (2013) point out that users evolve over time in terms of taste and 

properties of products.  This process of user evolution or change in users’ tastes takes 

place with knowledge, maturity and experience and is referred as personal development 

of users. McAuley and Leskovec (2013) prove that users or reviewers with similar level 

of experience will rate products in similar ways, even if their rating are temporally apart. 

Rating of a product is reflected in review text. For example, the review text of a highly 

rated product will have more positive descriptions of the product while the review text of 

a lowly rated product will have more negative descriptions of the product. Since 

reviewers’ experiences affect their ratings, in this thesis, we try to find if experience 

affects their reviewing skills as well. 

 For our research, if reviewers evolve overtime, we want to look into the trend of 

their evolution with regards to their reviewing skill or their ability to write quality 

reviews. As stated in Section 3.1.1, we measure review quality in terms of the perceived 

helpfulness received by the review. For a reviewer, their reviewing ability is measured in 

average helpfulness received by their reviews. The evolution, if any, may be directed 

either upward when reviewers start to post more helpful reviews over time or downward 

when reviewers start to post less helpful reviews over time. If there is no evolution, the 

trend will be more or less constant, or, in other words, average helpfulness of reviews 

posted by reviewers will be constant over time.  
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In this thesis, we focus on finding if reviewer classes evolve to form a trend that 

follows a pathway. With evolution, novice reviewers may evolve into expert reviewers or 

vice versa. McAuley and Leskovec (2013) have done a similar research on users 

experience level and their findings indicate that there are three types of users: (1) users 

who evolve into experts after progressing through all levels of experience, (2) users who 

never become experts, and (3) users who start as a expert from the very beginning. We 

follow a similar approach of treating experience as a function of time, to find how 

different classes of reviewers evolve from one class to another.  These findings can help 

us to understand the evolution patterns of each reviewer class and treat them accordingly 

when developing our recommendation system framework. 

3.2.2 Review sentiment analysis 

Reviewers share their experience with the product via review text.  In other words, a 

review text expresses its author’s (i.e., reviewer’s) opinion. There is a linguistic 

variability in review texts as they express different opinions, questions, and products 

(McAuley and Yang, 2016). Sentiment analysis helps to understand the opinion polarity 

in a review text. This will provide insights into whether different reviewer classes—as 

proposed in earlier sections—have different types of sentiment polarity.  

Note that there are different ways to express same opinion, some of which may be 

pleasing to the readers whereas others may not. As stated in Chapter 2, depending on the 

product consumption goal, consumers are inclined towards positive reviews for some 

products whereas negative reviews for other products (Zhang et al., 2010). Therefore, 

perceived helpfulness of a review may be directly related to linguistic difference in 

review text. We have to consider the effect of language used by different classes of 
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reviewers—novice and expert. There is a strong relation with “expertise” from the light 

of linguistic development (Romaine, 1984). Experts may have a more pleasing writing 

style than novices that makes their reviews perceived as more helpful. A pleasing writing 

style may indicate providing positive/negative information, using more/less pronouns, 

writing personal reviews by using “I” instead of “We”, and so on. To explore and answer 

these questions, we thus perform sentiment analysis in review text.  

3.2.3 Review recommendation system  

In this Thesis we propose a recommendation system framework that provides 

recommendations in the form of reviews to help reviewers to improve their reviewing 

skills and write better quality reviews. Traditionally, recommendation systems provide 

recommendations on web pages, videos, movies, music, and books (McDonald et al., 

2000). Recommendation systems have been helping customers make decisions on which 

products to purchase on E-commerce websites (Schafer et al., 2001).  Note that our 

review recommendation system is different from traditional recommendation systems in 

two major ways: 

1. Traditional recommendation systems provide suggestions for items to be of use to 

a user (Shapira et al., 2011). The suggestions are aimed at supporting the users in 

various decision-making processes, such as which item to buy, which music to 

listen, or what news to watch. Unlike traditional recommendation system, our 

recommendation system framework generates action recommendations such as 

which review to post or what kind of review to post for reviewers. The 

recommendations are not in the form of items or products but rather in the form 

of actions that the reviewer should perform.  The recommendations are actual 
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review’s text that could potentially improve the reviewing skill of the reviewer 

who reads the text.  More formally the review recommendation problem can be 

stated as: Let R be the set of all reviewers and let V be the set of all possible 

reviews that can be recommended. The space of V can be very large ranging to 

hundreds of millions of reviews and space of R can range in the millions as well 

in some cases. For each reviewer 𝑟 𝜖 𝑅,  we want to choose a review 𝑣′ 𝜖 𝑉 to 

help r improve the quality of his or her future reviews. 

2. In a traditional recommender system for item recommendations (such as movie, 

music, etc.), the usefulness of an item to a user is usually represented by a rating 

which is a measure of how much the item is favored by the user (Adomavicius et 

al., 2005). However, in our case, the usefulness of a recommended review to a 

reviewer is measured by how helpful the subsequent or resultant review written 

and posted by the reviewer after having read the recommended review.  Such a 

helpfulness measure is, in turn, computed from customers’ perspective, as it is 

derived from how they receive or rate the posted review.   More specifically, for a 

reviewer 𝑟, who uses a (recommended) review 𝑣1 to posts a review 𝑣1
′, the 

success of 𝑣1 is determined by the number of up-votes or helpfulness generated by 

𝑣1
′, since we define the review quality in terms of helpfulness (Section 3.1.1).  
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Chapter 4            
Understanding Reviewers 
 

As stated in Chapter 1,  one of our main goals in this Thesis is to differentiate reviewers 

based on the quality of their reviews to identify different classes of reviewers. In this 

Chapter, we try to understand reviewers by first differentiating and then predicting 

reviewers based on their review quality via user modeling. In building a model that is 

capable of differentiating and predicting a reviewer class, we have to perform following 

processes: 

1. Data collection mechanism (discussed in Section 4.1 in Chapter 4) 

2. Data preprocessing mechanism (discussed in Section 4.2 in Chapter 4) 

3. Data clustering (discussed in Section 4.3 in Chapter 4) 

4. Data classification (discussed in Section 4.4 in Chapter 4) 

We discuss each of the implementations in following sections. While we perform the 

aforementioned experiments,  we pursue the following series of objectives: 

1. Objective 1: Demonstrate that reviewers can be either expert or novice by 

performing data clustering and then doing data analysis to identify attributes that 

make them expert or novice. We will use the quality and quantity of reviews as 

metrics to define expert and novice reviewers. Differentiating different classes of 

reviewers will help to further understand the behavior of each class over time and 

over different product type. 
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2. Objective 2: Demonstrate that a number of features like review length, overall 

(rating), helpfulness, etc. affect review classification by developing decision tree 

for data classification to find features that differentiates clusters from one another. 

Understanding which feature plays more important role than other to perform 

classification will help us find the features that are more important than other.  

3. Objective 3: Demonstrate that reviews are valued differently across different 

product categories by performing linear analysis on reviews of diverse product 

categories such as Books, Electronics, Cellphones and accessories, Health and 

personal care, Grocery and gourmet foods, Office products, and Baby. 

Understanding that reviews are valued differently across different product types 

will help us identify salient features for each category. 

4.1  Data collection mechanism 

The data for our research was extracted from Amazon.com web store. Amazon website 

stores information from its online interactions with buyers. This information includes the 

details of each review written by buyers also referred as reviewers in this context. It 

contains (1) the review text, (2) a reviewer id which is in alphanumeric format, (3) the 

review post timestamp, (4) the product id in alphanumeric format, (5) overall which is the 

rating that the reviewer assigned to the product he/she purchased, and (6) helpfulness 

which is the number of votes that the review received from other users who found the 

review helpful.  

This Amazon product review data was collected by performing breadth-first-

search on user-product-review graph until termination by McAuley, et al. (2015). It is 

available online in one-review-per-line in loose JSON format for academic research 
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purpose. The dataset contains product reviews from Amazon, including 142.8 million 

reviews spanning from May 1996 to July 2014. The reviews are separated into 24 

different product categories such as Automotive, Beauty, Books, Digital Music, 

Electronics, and so on. 

To summarize what was previously discussed in Chapter 2 and Chapter 3, 

reviewers seek and write different information based on product type. Zhang et al. (2010) 

points that product reviews are evaluated differently based on consumers’ consumption 

goals. For products associated with promotion consumption goal, consumers want to 

identify useful information for achieving outcomes, whereas for products associated with 

prevention consumption goal, they want to identify useful information for avoiding 

undesirable outcomes (Zhang et al., 2010). The perceived helpfulness of a review may be 

different for different product types. Hence for our research, we include diverse product 

categories which may fall into any of the abovementioned product types. To generalize 

reviewers differentiation approach, we choose to examine reviewers’ characteristics 

beyond single product category. Doing so demands a large amount of training data in 

diverse categories, which will strengthen the novelty of user modeling approach we 

propose. We choose nine different categories for our research whose characteristics such 

as number of users who have provided at least one review; number of products; number 

of reviews; and consumption goal of each category are shown in Table 4.1.  

Category Users Product Reviews Goal 
Books 8,201,127 1,606,219 25,875,237 Promotion Consumption  

Electronics 4,248,431 305,029 11,355,142 Promotion Consumption  

Cell Phones and accessories 2,296,534 223,680 5,929,668 Promotion Consumption  

Grocery and gourmet food 774,095 120,774 1,997,599 Prevention Consumption  

Health and personal care 1,851,132 252,331 2,982,326 Prevention Consumption  

Office Product 919,512 94,820 1,514,235 Promotion Consumption  

Baby 19,445 7,050 160,792 Prevention Consumption  

Beauty 1,210,271 249,274 2,023,070 Prevention Consumption 

Pet supplies 740,985 103,288 1,235,316 Prevention Consumption 
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Table 4.1: Dataset statistics for our experiment 

Review data of all the above product categories are examined individually. 

Individualizing experiments for each product categories allowed us to model expert and 

novice differently based on the product category, which is one of the crucial parts of our 

user modeling. 

4.2 Data preprocessing mechanism 

The Amazon product review data obtained online is parsed using python code and is then 

run through various test to get the better understanding on the data. We looked at user 

distribution, product distribution, and review distribution, all of which will be discussed 

in detail in Section 4.2.1. We observed that the review data was imbalanced and at the 

same time contained large proportion of inactive users, which will be discussed in 

Section 4.2.1 and Section 4.2.2 along with the solutions, we came up with to deal with 

aforementioned problems. 

4.2.1 Data cleaning to address existing data imbalance 

To get a closer understanding of Amazon product review data, we started by counting 

number of users referred as user count, number of products referred as product count and 

number of reviews referred as review count in chronological order for every month. The 

distribution was imbalanced, growing exponentially for first few years and then growing 

linearly after that until 2013.  

Amazon books review data contains reviews from 1996 to 2014. Below is a graph 

of review count; user count and product count in log with respect to time in month.  
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Figure 4.1: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Books” category. 

In Figure 4.1, user, review and product count grow exponentially before year 

2000, followed by more gradual and consistent growth from 2003 to 2013. One of the 

probable explanations for the exponential growth could be the Internet traffic growth, 

which was close to doubling between 1997 and 2002 (Odlyzko, 2003). Considering that 

this exponential growth occurred in distant past, more than a decade ago and is not an 

accurate representation of recent growth, we have decided to ignore the data before 2003. 

At a closer look we can observe that product count in January 2014 decreases abruptly by 

82% whereas user and review count don’t decrease along with product count, which is 

highly unnatural considering the high correlation, specifically ~0.99 between these three 

counts for last 10 years from 2003 to 2013.  Also, user, review and product count has a 

decreasing trend in the last month that is July 2014, which is probably due to data 

incompleteness for the month. Considering the data inconsistencies due to data 

incompleteness in 2014, we choose to ignore the data of year 2014, and include only 

year-round complete data spanning from January 2003 to December 2013. Figure 4.2 

shows review count; user count and product count in log with respect to time in month 

from January 2003 to December 2013. 
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Figure 4.2: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Books” category. 

After cleaning, Amazon books review data from Jan 2003 to Dec 2013 looks 

more gradual and is more correct representation of recent growth trends in user, review 

and product count.  

We repeated this process of data observation, analysis followed by cleaning for 

Amazon product review data of the nine product categories listed in Table 4.1 

individually. The result of this process is provided in Table 4.2, which displays the 

duration in year before and after the data was cleaned to address data imbalance. 

Category Year before cleaning Year after cleaning 
Books 1996 to 2014 2003 to 2013 

Electronics 1998 to 2014 2003 to 2013 

Cell Phones and accessories 1991 to 2014 2003 to 2013 

Grocery and gourmet food 2000 to 2014 2003 to 2013 

Health and personal care 1998 to 2014 2003 to 2013 

Office product 1998 to 2014 2003 to 2013 

Baby 1998 to 2014 2003 to 2013 

Beauty 1998 to 2014 2003 to 2013 

Pet supplies 1998 to 2014 2003 to 2013 

Table 4.2: Data statistics of before and after data cleaning to address data imbalance 

After cleaning Amazon product review data, the chronological distribution is 

more gradual making the data balanced in terms of user count; product count and review 
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count in chronological order for all nine product categories which can be observed in 

Appendix, Section A. 

4.2.2 Data cleaning to remove large proportion of inactive users 

Active users are the total number of reviewers who have been reviewing for a certain 

number of months, which may or may not be continuous. Active users, in this context 

have a review history for certain number of months, which can be used for better 

understanding the reviewers. There is a large number of users who are active for very few 

months that makes it harder to find their characteristics to understand their reviewing 

pattern. These users are called inactive users, as their review experience is low in terms 

of number of month they have reviewed. These inactive users may or may not be expert 

reviewers.  We have decided to remove them from consideration. 

In an ideal case, the number of active users increases gradually as the number of 

month increases, which means that the old users keep reviewing consistently as well as 

new users have started reviewing with time. However, from our findings we observe that 

there are many users who discontinue to review with time. These inactive users usually 

make a large proportion of the user pool and if used in user modeling tend to dilute 

results, as this large pool of inactive users has very less review history. As this data will 

be used as a training set for clustering and classification we have chosen to include active 

users with substantial review history to strengthen the validity of our clustering and 

classification.  

To identify the threshold value on number of months that differentiates between 

active and inactive users, we observe the number of users active over time and how the 

user count changes.  



www.manaraa.com

 48 

For this, as detailed in Table 4.3, we used Amazon books review data to plot top 

15 values of total number of users active for respective month count referred as user 

count and calculated the slope of user count for the respective month and higher. For 

example, slope when month count is 2 indicates the slope of user count corresponding to 

month count 2, 3, 4, and higher. The slope is an indicator of the rate at which user count 

is increasing or decreasing with respect to month count. From Table 4.3, we observe that 

there is a drastic change in the number of user count over month count for months 1 

through 5. The month count corresponding to the point from where the change in slope is 

gradual is picked as the threshold that differentiates active users from inactive users.  

Month Count User Count Slope 
1 4509951 17563 

2 924735 4927.1 

3 347701 2339.1 

4 168642 1365.9 

5 94484 893.2 

6 57812 627.7 

7 38547 465.2 

8 26397 355.9 

9 19153 281 

10 14222 226 

11 10746 184.8 

12 8195 153.8 

13 6575 129.8 

14 5182 110.3 

15 4199 95.1 

Table 4.3: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) 

Looking at Table 4.3, user count vs. month count, we observe that there are 

5951029 (~95%) users who are active for less than 5 month and 315322 (~5%) users who 

are active for 5 month or more. In this case, month count 5 is a threshold that 

differentiates active and inactive users i.e. 95% of the users are inactive, as they have 

reviewed for 4 month or less and 5% of the users who have reviewed for 5 month or more 

are active as they have consistent reviewing frequency.  
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To get a visual representation of the above finding we plot Figures 4.3 and 4.4 to 

see the graphs of user count with respect to month count before and after removing 

inactive users i.e. users active for less than 5 month.  

 
Figure 4.3: User count vs. Month count before removing 

users active for less than 5 month 

 
Figure 4.4: User count vs. Month count after 

removing users active for less than 5 month 

 

From Figure 4.3, we can observe that the graph descends quickly till active month is 5 

and descends gradually after that i.e. the number of users who are active for 5 month or 

more are more-or-less linear with respect to month count. We can also see that the 

number of users who are active for 4 months or less grow (or shrink) almost 

exponentially. From Figure 4.4, we can say that the user count decreases gradually with 

month count after removing inactive users that is users active for less than 5 month. This 

trend is balanced and is more correct representation of active user count with time.  

We repeat this process to find the threshold month count in order to differentiate 

active and inactive users in each of the nine product categories listed in Table 4.1 

individually. The details of month count; user count; and slope for all nine -product 

categories which can be observed in Appendix, Section B. 

Table 4.4 details the threshold month count for all the nine categories. It can be 

observed that threshold month count is not uniform and is different for different product 

categories. 
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Books 3 

Electronics 3 

Cell Phones and accessories 4 

Grocery and gourmet food 3 

Health and personal care 3 

Office product 3 

Baby 4 

Beauty 3 

Pet supplies 3 

Table 4.4: Threshold month count to differentiate active and inactive users 

4.3 Data clustering 

To understand different types of reviewers, we apply clustering to group reviewers with 

similar review patterns together. The centroid of each cluster represents the general 

behavior of all the members in the cluster. As stated in Chapter 2, we use X-means over 

the popular K-means clustering because of the two main limitations of K-means: (1) K-

means scales computationally poorly, and (2) the number of clusters K has to be supplied 

by user (Pelleg et al., 2000). As we are working with large Amazon product review data 

set we don’t want to provide the explicit number of clusters. X-means clustering 

generates as many clusters as necessary, which will help us to understand different types 

clusters representing different types of reviewers. We will talk about features of Amazon 

product review data set that are used for clustering in Section 4.3.1. 

4.3.1  Feature set selection 

Feature set of reviewer is a set of attributes used to describe reviewer in Amazon product 

review data. As stated in Section 3.1.2 in Chapter 2, Amazon product review dataset 

contains a number of attributes related to review, reviewer and product. To attain our goal 

of modeling reviewers, we synthesize these attributes to describe each reviewer and 

create a list of features referred as feature set. Each review in Amazon product review 

data contains attributes listed in Table 4.5. 

Attribute Explanation 
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reviewerID ID of the reviewer, e.g. A2SUAM1J3GNN3B 

asin* ID of the product, e.g. 0000013714 

reviewerName* Name of the reviewer 

helpful Helpfulness rating of the review, e.g. 2/3 

reviewText Text of the review 

overall rating of the product 

summary summary of the review 

unixReviewTime time of the review (unix time) 

reviewTime* Time of the review (raw) 

Table 4.5: Attributes in Amazon product review data (attributes with * are not used for our research) 

As listed in Table 4.5, helpful attribute of a review is determined by the number of votes 

received by the review from other customers. As covered in Chapter 3, helpfulness of a 

review is 2/3, if 2 customers up-voted the review and 1 customer down-voted the review. 

Overall is the rating, ranging from 1 to 5 that the reviewer themselves assign to the 

product being reviewed. Some of the attributes in Table 4.5 such as asin, and 

reviewerName do not help in pattern recognition therefore we choose to ignore them. 

Also, we derive review posted timestamp from unixReviewTime and ignore reviewTime. 

The attributes from Table 4.5 are used to create a feature set to describe each reviewer. 

Most of this synthesis process is done using Python scripts to create the feature set listed 

in Table 4.6. 

Feature set Explanation 
Reviewer ID ID of the reviewer, e.g. A2SUAM1J3GNN3B 

Total review count Total number of reviews written by the reviewer has, e.g. 5 

Average helpfulness Average of helpfulness of the reviews written by the reviewer, e.g. 1/3 

Average review length Average of the length of reviews written by the reviewer, e.g. 54.06 

Average overall Average of all the rating of the product rated by the reviewer 

Total active month Total number of months the reviewer has been writing reviews 

Table 4.6: Feature set of each reviewer 

While creating the feature set for clustering, we try to synthesize as many features as 

possible. Although, in case of multidimensional data, features are selected in such a way 

that they can cover all the possible clusters in the data because different features have 

different power on differentiating different clusters (Cai et al., 2010). In our case, we use 
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6 out of 9 different attributes as listed in Table 4.5 to describe reviews, we were able to 

synthesize 6 different features to describe reviewers. 

4.3.2  Data clustering result 

After synthesizing the feature set, the reviewers are automatically divided into clusters by 

using X-means clustering. The two-step process of first creating feature set and second 

performing X-means clustering on the featured dataset are repeated on each product 

category listed in Table 4.1. The number of clusters found is different for different 

product category as seen in Table 4.7. 

Product categories Number of clusters 
Books 3 

Electronics 3 

Cell Phones and accessories 2 

Grocery and gourmet food 4 

Health and personal care 4 

Office product 3 

Baby 4 

Beauty 4 

Pet supplies 4 

Table 4.7: Number of clusters for each category 

The centroid of each cluster is a representative of the respective cluster. The cluster 

centroid consist of same features that were used to describe each reviewer, as listed in 

Table 4.6. Based on the feature set of the cluster centroid, the respective cluster is 

differentiated as either expert or novice or conscientious, and so on. The process of 

analyzing cluster centroid to label each clusters is explained in Section 4.3.2.  

4.3.3 Data cluster analysis 

We perform cluster analysis of all nine categories in three steps. First, we take Books as 

the first category, diagnose the behavior of each cluster in this category by observing its 

centroid then use t-test and graphs to differentiate these clusters based on their nature. 

Second, we repeat the similar process to differentiate clusters into different types in 
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remaining eight categories (e.g., Electronics, Cell Phones and accessories, Health and 

personal care, Grocery and gourmet food, Office product, Baby, Beauty, and Pet 

supplies) highlighting the differences and similarities of clusters in different categories. 

Third, we draw conclusions based on the observations we made in first and second step.   

4.3.3.1  Data cluster analysis- Step 1 (Analysis process) 

The centroid of a cluster is the middle of the cluster and represents the average across all 

the points in the cluster. A cluster’s centroid gives us an idea about the general nature of 

the cluster based on the values of the centroid’s features. We analyze the features of each 

centroid in Books category and use this to differentiate the clusters into expert or novice 

or any other type as necessary.  

Books 

From Table 4.7, we can observe that, in the Books category, reviewers are clustered into 

3 different clusters. Table 4.8 depicts the values of the feature set of the centroid of each 

cluster.  

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulness 

Observations 

C1 18.711 771.020 3.484 9.268 0.644 93438 (30%) 

C2 25.151 837.275 4.530 9.946 0.854 129164 (41%) 

C3 15.954 491.831 4.627 7.977 0.659 92721 (29%) 

Table 4.8: Cluster centroid feature values for "Books" category.  Bolded values indicate highest values. 

The cluster centroids in Table 4.8 tell us the general behavior of each cluster as a whole 

and we can make the following quick observations:  

 Reviewers in C2 have the highest values for all attributes except average overall, 

which it comes in a close second.   

 Reviewers in C3 have the highest average overall among the three clusters. 
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 Reviewers in C3 have the least total review count, average review length and total 

active month among the three clusters. 

 Reviewers in C1 have the least average overall and average helpfulness among the 

three clusters. 

We perform t-test analysis to find if the quick observations we made about each feature 

are statistically significant.  

First, Table 4.9 shows additional statistics of all features for each cluster in terms 

of minimum, maximum, mean, and standard deviation values. Standard deviation 

measures how dispersed the numbers are within the range of minimum and maximum 

value. Higher standard deviation indicates that the data points are spread far from the 

mean value. For example standard deviation of total review count in C2 is 141.929, 

which is very high compared to other clusters. Figure 5(b) of total review count with 

respect to active month for C2 shows that there are a few data points that are very far 

from the mean value where most of the other data points are located. So standard 

deviation is a good indicator of knowing if majority of the reviewers within the cluster 

strictly follow same trend or vary widely. 
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Cluster Mean total 

review count 

Min total 

review count 

Max total 

review count 

Standard 

deviation 
C1 18.711 5 4050 45.041 

C2 25.151 5 35625 141.929 

C3 15.954 5 1316 22.483 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 
C1 771.020 81.909 29980.833 777.325 

C2 837.275 76.800 18490.833 783.724 
C3 491.831 67.125 20928.333 504.424 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 
C1 3.392 1 4.204 0.540 

C2 4.523 3.250 5 0.369 

C3 4.585 4.038 5 0.292 

Cluster Mean total 

active month 

Min total 

active month 

Max total 

active month 

Standard 

deviation 
C1 9.548 5 132 8.720 

C2 9.935 5 132 10.099 

C3 7.863 5 120 5.111 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 
C1 0.644 0 1 0.127 

C2 0.854 0.700 1 0.065 

C3 0.659 0 0.770 0.100 

Table 4.9: Statistics of feature set in different clusters for “Books” category 

Table 4.10 below shows the t-test results for the three clusters in the Books category for 

each feature. 

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 1.02878E-22 8.76924E-06 0 1.45806E-09 0 

C1 vs. C3 2.9947E-52 0 0 2.1523E-183 4.566E-105 

C2 vs. C3 1.02653E-86 0 7.0889E-116 1.4871E-225 0 

Table 4.10: t-Test result for clusters in “Books” category.  Bolded values (all) are statistically significant, p < 

0.05. 

From the p-value of t-test on all the features as displayed in Table 4.10, we observe that p 

< 0.05 which is strong evidence against null hypothesis so we accept alternative 

hypothesis- which states that each pair of mean values of each feature in 2 different 
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clusters are not equal. So based on the alternative hypothesis we can make the following 

conclusions from Table 4.9: 

 Mean of total review count in C2 is greater than C3, which in turn is greater than 

C1. This can be observed visually in Figures 4.5(a), 4.5(b) and 4.5(c) that show 

the distribution of total review count over active month for C1, C2 and C3 

respectively.  

 Mean of average review length of C2 is greater than C1, which in turn is greater 

than C3. This can be observed visually in Figure 4.6(a), 4.6(b) and 4.6(c) that 

show the distribution of average review length over active month for C1, C2 and 

C3 respectively. 

 Mean of average overall of C3 is greater than C2, which in turn is greater than C1. 

This can be observed visually in Figures 4.7(a), 4.7(b) and 4.7(c) that show the 

distribution of average overall over active month for C1, C2 and C3 respectively. 

 Mean of total active month of C2 is greater than C1, which in turn is greater than 

C3. This can be observed visually in Figures 4.8(a), 4.8(b) and 4.8(c) that show 

the distribution of total active month over total review count for C1, C2 and C3 

respectively. 

 Mean of average helpfulness of C2 is greater than C3, which in turn is greater 

than C1. This can be observed visually in Figures 4.9(a), 4.9(b) and 4.9(c) that 

show the distribution of average helpfulness over active month for C1, C2 and C3 

respectively. 
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Figures 5-9 show comparative distribution of each feature set in different clusters. They 

give visual acknowledgement to the above observations. 
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Figure 4.5(a): Graph of total 

review count with respect to active 

month for C1 

 
Figure 4.5(b): Graph of total 

review count with respect to active 

month for C2 

 
Figure 4.5(c): Graph of total review 

count with respect to active month 

for C3 

 
Figure 4.6(a): Graph of average 

review length with respect to 

active month for C1  

 
Figure 4.6(b): Graph of average 

review length with respect to 

active month for C2 

 
Figure 4.6(c): Graph of average 

review length with respect to active 

month for C3 

 
Figure 4.7(a): Graph of average 

overall with respect to active 

month for C1 

 
Figure 4.7(b): Graph of average 

overall with respect to active 

month for C2 

 
Figure4. 7(c): Graph of average 

overall with respect to active month 

for C3 

 
Figure 4.8(a): Graph of total 

active month with respect to total 

review count for C1  

 
Figure 4.8(b): Graph of total 

active month with respect to total 

review count for C2 

 
Figure 4.8(c): Graph of total active 

month with respect to total review 

count for C3 

 
Figure 4.9(a): Graph of average  

Figure 4.9(b): Graph of average 

 
Figure 4.9(c): Graph of average 
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helpfulness with respect to active 

month for C1  
helpfulness with respect to active 

month for C2 

helpfulness with respect to active 

month for C3 

 

Based on the observations we made from Table 4.9, which are supported by 

Figures 4.5-4.9 we will name the three clusters according to their nature defined by the 

values of their feature set.  For example, features such as review count and review length 

measure the devotion of a reviewer towards online reviewing.  Furthermore, a feature like 

overall measures the worthiness of the product to a reviewer perceived by the reviewer 

themself.  Together, these features are entirely dependent on the reviewer’s devotion and 

perception. We refer to these features as internal features since reviewer has total control 

over these features. On the other hand, as stated in Chapter 3, a feature like helpfulness is 

a measure of how useful/helpful the review is as perceived by other users. Helpfulness of 

a review measures the worthiness of the review to other users and is referred as an 

external feature. An external feature is mostly unbiased, as a reviewer has no direct 

control over it—except for writing a good or bad review. An external feature helps to 

provide unbiased quantification of the quality of review to some degree.  

Based on the external and internal features we name the clusters accordingly as described 

below. 

 Cluster C2 represents reviewers who have highest review count, longest review 

length, most helpful reviews and are active for the longest period of time. Based on 

their high interest for reviewing and the helpfulness of their reviews to other users, 

we refer to them as the expert cluster.  

 Cluster C3 represents reviewers who have least review count, shortest review length 

and are active for least amount of time. From this, we can say that these reviewers are 

not very interested in reviewing and we refer to them as the novice cluster. However 
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they tend to give highest overall to the products they review and their reviews are less 

helpful than expert cluster C2 but more helpful than C1.  

 Cluster C1 represents reviewers who have intermediate review count, intermediate 

review length, least helpfulness and are active for intermediate amount of time. 

Intermediate values imply the values are greater than novice cluster and less than 

expert cluster. From this tendency we can say that these reviewers are interested and 

diligent in writing reviews but they lack the idea of writing helpful reviews and we 

refer to them as the conscientious cluster. 

We repeat the above process for remaining eight categories and find if the clusters are 

similar or different than Books category. 

4.3.3.2  Data cluster analysis- Step 2 (Cluster types) 

In this section we perform the same cluster analysis in five other categories e.g., 

Electronics, Cell phones and accessories, Health and personal care, Grocery and gourmet 

food, Office product, Baby, Beauty, and Pet supplies. We also discuss the similarities and 

differences of cluster nature in different categories. 

Electronics 

From Table 4.7, we know that there are 3 different types of clusters in electronics 

category. Table 4.11 depicts the values of the feature set of the centroid of each cluster.  

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulness 

Observations 

C1 7.502 746.024 2.968 5.798 0.714 33127 (27%) 

C2 9.548 735.983 4.3908 6.268 0.852 70495(42%) 

C3 9.197 512.683 4.349 5.856 0.600 42535(31%) 

Table 4.11: Cluster centroid feature values for "Electronics" category.  Bolded values indicate highest values. 

The cluster centroids in Table 4.11 tell us the general behavior of each cluster as a whole.  
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Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in Appendix, Section B. We perform t-test 

analysis to find if the values of each feature set in Table 4.11 are statistically significant.  

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 1.751E-171 0.038 0 6.538E-50 0 

C1 vs. C3 1.406E-186 0 0 0.039 0 

C2 vs. C3 8.169E-06 0 3.385E-34 1.123E-36 0 

Table 4.12: t-Test result for clusters in “Electronics” category.  Bolded values are statistically significant, p < 

0.05. 

In Table 4.12, we see that all of the features are statistically significant except for average 

review length between C1 and C2 and total active month between C1 and C3. Since 

cluster C1 has the highest average review length observed from Table 4.11, and average 

review length of C2 is statistically insignificant with respect to C1, we can say that C1 

and C2 both have longer average review length compared to C3. Similarly mean of total 

active month of C1 and C3 are statistically insignificant so their means are equal and both 

are less than C2. 

Based on the external and internal features, there are three types of clusters in 

Electronics which are very similar to Books: 1) C2 referred as expert cluster, 2) C1 

referred as novice cluster, and 3) C3 referred as conscientious cluster. Expert cluster in 

both categories represent most experienced reviewers in terms of active months and 

review count. Similarly in both categories higher review count, active month and overall 

correspond to higher helpfulness. 

From Tables 4.8 and 4.11, we have to note that there are similarities between the 

expert clusters of Books and Electronics respectively. Experts in both the categories have 

the highest helpfulness which may be largely because they 1) review frequently i.e., have 
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highest review count, 2) have been active for the longest period of time i.e., have highest 

active month, and 3) share satisfied positive experiences with product i.e., have high 

overall.  

Cellphones and accessories 

From Table 4.7, we know that there are 2 types of clusters in cellphones and accessories 

category. Table 4.13 depicts the values of the feature set of the centroid of each cluster.  

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulness 

Observations 

C1 6.784 562.058 3.210 4.929 0.678 7740 

C2 7.851 537.654 4.392 5.142 0.768 13946 

Table 4.13:  Cluster centroid feature values for "Cell Phones and accessories" category.  Bolded values indicate 

highest values. 

The cluster centroids in Table 4.13 tell us the general behavior of each cluster as a whole.  

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. 

Table 4.14 displays p-value from t-test of each attribute in two clusters with a sample size 

of about 7000. 

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 1.804E-43 1.477E-13 0 7.438E-09 1.616E-37 

Table 4.14: t-Test result for clusters in “Cell Phones and accessories” category.  Bolded values (all) are 

statistically significant, p < 0.05 

From Table 4.14, we see that all of the features are statistically significant since p < 0.05. 

Based on the external and internal features, there are only two types of clusters: 1) C2 

referred as expert cluster, and 2) C1 referred as conscientious cluster.  Note that, 

however, there is not a third cluster (e.g., a novice cluster as in Books and Electronics).  

There are fewer reviews per product (~27 reviews per product) in Cell phones and 
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accessories compared to similar product like Electronics (~38 reviews per product).  This 

is mainly because most people with less expertise tend to buy cellphones and its 

accessories in-store after discussing the specification of the product with salespersons. 

Naïve users who otherwise would have been novice reviewers, may find it more easy and 

reliable to make purchases on relatively high investment products such as cellphones. 

Furthermore, the ease of buying cellphone at local wireless carrier’s store is less time 

consuming compared to buying the same product online. To make in-store purchase of 

cellphone a person can just walk into a store, pick a cellphone, set up a plan, and its ready 

to use. Further, local carrier stores offer various attractive money-saving schemes on data 

plan bundled together with  new cellphones which is not offered if one decides to buy the 

cellphone online. Additionally, they help their customers to transfer their data plan from 

old phone to new phone. Hence this ease and convenience attracts most of the novice 

reviewers who end up making in-store purchase when it come to cellphones and 

accessories.  Even if some novice reviewers may be buying cell phones and accessories 

online, they are too few in number to warrant a cluster.  

Briefly, the characteristics of expert and conscientious clusters are similar to those 

found in Books and Electronics. Experts represent experienced reviewers in terms of 

active  month and review count. Higher review count, active month and overall 

correspond to higher helpfulness.  

Similar to Books and Electronics, the expert cluster in Cell phones and 

accessories has the highest helpfulness which can be attributed to the highest overall, 

highest review count and highest active length as seen in Table 4.13.  

Hence we can conclude that: 
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Conclusion 4a: High overall, review count and active month leads to helpful 

reviews for Books, Electronics, and Cellphones and accessories. 

Health and personal care 

From Table 4.7, we know that there are 4 types of clusters in Health and personal care 

category. Table 4.15 depicts the values of the feature set of the centroid of each cluster.  

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulness 

Observations 

C1 6.234 556.852 4.569 4.421 0.632 20284 

C2 5.368 598.995 3.090 4.221 0.610 9719 

C3 6.684 352.357 4.664 4.358 0.238 25107  

C4 6.342 415.873 3.468 4.477 0.247 15559 

Table 4.15: Cluster centroid feature values for "Health and personal care" category.  Bolded values indicate 

highest values. 

The cluster centroids in Table 4.15 tell us the general behavior of each cluster as a whole. 

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. 

Table 4.16 displays p-value from t-test of each attribute in four clusters with a sample 

size of about 7000. 

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 4.974E-31 1.477E-13 0 7.438E-09 1.616E-37 

C1 vs. C3 1.702E-10 0 4.086E-173 0.185 0 

C1 vs. C4 0.173 1.006E-246 0 0.119 0 

C2 vs. C3 1.688E-77 0 0 2.238E-06 0 

C2 vs. C4 1.913E-38 0 0 2.179E-06 0 

C3 vs. C4 5.288E-07 0 0 2.417E-06 0 

Table 4.16:  t-Test result for clusters in “Health and personal care” category.  Bolded values are statistically 

significant, p < 0.05. 

From Table 4.16, we see that all of the features are statistically significant since p < 0.05 

except total review length and total active month in C1 and C4, and total active month in 
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C1 and C3. Based on the external and internal features we interpret the clusters 

accordingly as described below. 

 Cluster C1 represents reviewers who have greater review count, greater review 

length, have more helpful reviews, have high overall and are active for long period of 

time. Based on their high interest for reviewing and the helpfulness of their reviews to 

other users, they are expert cluster. Since they tend to write more reviews compared 

to cluster C2 which is also an expert cluster, we may refer to C1 as the frequent 

expert. Also they tend to write positive reviews and we may refer to them as positive 

expert. 

 Cluster C2 represents reviewers, who have lowest review count, longest review 

length, have lowest overall and are active for least period of time. From lowest active 

month and review count, we can say that these reviewers are new reviewers who 

haven’t written many reviews but their reviews are long and detailed, which make 

them most helpful. So we refer to this cluster as the non-frequent expert. They also 

have the lowest overall which means they tend to write their negative experiences 

with the product and we may refer to them as negative expert.  

 Cluster C3 is referred as the conscientious cluster. 

 Cluster C4 is referred as the novice cluster. 

In the first three categories analyzed, we observed that higher review count, active month 

and overall correspond to higher helpfulness.  

We observed a very unique cluster referred as non-frequent negative expert. 

Experts we have known so far—e.g., from Books, Electronics, and Cellphones and 

accessories—are reviewers with more experiences who usually write positive reviews 
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and have been active for a long time. But these non-frequent negative experts are 

different. They write negative reviews and yet they have highest helpfulness and also 

have fewer number of reviews. This may be related to Health and personal care product 

being very different from other products we have covered thus far.  Health and personal 

care are sensitive products as its consumption effects consumers’ health directly so users 

are very careful before purchasing these products.  That is, unlike previous categories 

such as Cell phones, Books and Electronics, users find negative reviews helpful because 

they want to be well informed on both positive as well as negative effects of the product. 

Users tend to read through both positive and negative reviews and find detailed and well 

described reviews more helpful.  

One of the important observations that can be drawn from Table 4.15 is that for 

the two expert clusters that we identify—(1) non-frequent negative expert (C2) and (2) 

frequent positive expert (C1)—the average review text length is highest and second 

highest, respectively, compared to other clusters. These values are statistically significant 

as seen in Table 4.16. The average helpfulness are highest and second highest for non-

frequent negative expert (C2) and 2) frequent positive expert (C1) respectively.  

Hence we draw the following conclusion: 

Conclusion 4b: Longer reviews lead to helpful reviews for Health and personal 

care products. 

Grocery and gourmet food 

From Table 4.7, we know that there are 4 types of clusters in Grocery and gourmet food 

category. Table 4.20 depicts the values of the feature set of the centroid of each cluster.  
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Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulness 

Observation

s 

C1 8.862 428.211 3.641 5.944 0.186 6756 

C2 7.359 473.124 4.596 4.808 0.654 9298 

C3 7.158 318.656 4.707 4.583 0.234 13521 

C4 7.245 491.464 3.24 5.085 0.515 5136 

Table 4.17:  Cluster centroid feature values for "Grocery and gourmet food" category.  Bolded values indicate 

highest values. 

The cluster centroids in Table 4.17 tell us the general behavior of each cluster as a whole.  

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. 

Table 4.18 displays p-value from t-test of each attribute in four clusters with a 

sample size of about 5000. 

 p-value 

P-Value Total 

Review 

Count 

Average 

Review 

Length 

Average 

Overall 

(rating) 

Total 

Active 

Month 

Average 

Helpfulness 

C1 vs. C2 7.18361E-14 3.93857E-17 0 7.44997E-48 0 

C1 vs. C3 1.90958E-26 1.3657E-144 0 7.42498E-82 2.0396E-154 

C1 vs. C4 2.02067E-16 3.09717E-23 1.4369E-270 1.02828E-22 0 

C2 vs. C3 0.220371617 4.0523E-274 8.1817E-126 1.88921E-05 0 

C2 vs. C4 0.566135001 0.004018174 0 0.000159342 0 

C3 vs. C4 0.582984919 5.6938E-204 0 1.9329E-14 0 

Table 4.18:  t-Test result for clusters in “Grocery and gourmet food” category.  Bolded values are statistically 

significant, p < 0.05. 

From Table 4.18, we see that all of the features are statistically significant since p < 0.05 

except total review length C2 and C3, C2 and C4, and C3 and C4. This means total 

review count of C2, C3 and C4 are equal to each other and all are less than C1. Based on 

the external and internal features we interpret the clusters accordingly as described 

below. 

 Cluster C2 represents reviewers who have greater review count, greater review 

length, have most helpful reviews, have high overall and are active for long period of 

time. Based on their high interest for reviewing and the helpfulness of their reviews to 
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other users, they are expert cluster. Since they tend to give positive rating compared 

to cluster C4 which is also an expert cluster, we refer to C2 as the positive expert. 

 Cluster C4 represents reviewers, who have greater review count, greatest review 

length, have more helpful reviews, have least overall and are active for long period of 

time. From least overall and highest review length, we can say that these reviewers 

write detailed review for products that they are not satisfied with. These reviews are 

found to be very helpful to other uses so we refer to this cluster as the negative expert.  

Long and detailed reviews may be the reason of  why these reviews are most helpful.  

 Cluster C1 is referred as the conscientious cluster. 

 Cluster C3 is referred as the novice cluster.  

Similar to Health and personal care, we observe that longer the review length 

more helpful the reviews are. So for Grocery and gourmet food, a detailed well described 

reviews are found to be more helpful irrespective of overall rating.  

Again, while we observed that higher overall leads to helpful reviews in the first 

three categories—Books, Electronics, and Cell phones and accessories, this is not true for 

Grocery and gourmet food as we observe that both higher and lower overall—i.e.,  C2 

and C4 respectively—lead to helpful reviews. This suggests that reviews for Grocery and 

gourmet foods are helpful for both positively and negatively rated products. An example 

of a helpful negative review is a review that informs that a food item causes a specific 

type of allergy in babies. This review could help consumers to make informed purchase 

decision which may be either to buy the food for adults or not to buy the food for babies. 

Despite the bad review, the review turned out to be very helpful. 
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Considering C4 as Negative experts, they are similar to the one we observed in 

Health and personal care. Like Health and personal care, Grocery and gourmet food are 

sensitive products as they directly affect consumers’ health. So users want to read 

through all kinds of reviews both positive and negative and make a well-informed 

decision whether to buy the product or not. We observe from Table 4.17 that for expert 

clusters identified—(1) negative expert (C4) and (2) positive expert (C2), the average 

review text length is the highest and second highest respectively compared to other 

clusters. These values are statistically significant as seen in Table 4.18. The average 

helpfulness are highest and second highest for positive expert (C2) and negative expert 

(C4) respectively. Hence we can established that, the common feature between positive 

and negative expert is the practice of writing long, well described reviews which is the 

reason behind their helpfulness. So we can infer that users find it helpful when they read 

the details of product whether positive or negative when buying Grocery and gourmet 

foods. Similar to Health and personal care products we conclude that: 

Conclusion 4c: Longer reviews leads to helpful reviews for Grocery and 

gourmet food products. 

Unlike Health and Personal care products, the reviewing frequencies for both 

positive and negative experts in Grocery and gourmet food are similar. This may be 

because food items are one of the basic requirements of humans and they seem to review 

these products pretty well without much practice or experience. From Table 4.17, we 

know that negative expert (C4) and positive expert (C2) both have lower review count 

compared to other clusters. Table 4.18 supports that the reviewing frequency of these two 

clusters are not statistically significant or in other words, both the clusters have same low 
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reviewing frequency. This is very unique to Grocery and gourmet food as experts in other 

categories usually have high reviewing frequency or active month. Hence we draw 

following conclusion: 

Conclusion 4d: Expertise for reviewing Grocery and gourmet food does not 

necessarily come with practice.  

Office products 

From Table 4.7, we know that there are 3 types of clusters in Office products category. 

Table 4.19 depicts the values of the feature set of the centroid of each cluster. 

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulnes

s 

Observatio

ns 

C1 5.545 764.199 4.398 4.657  0.661 6766 

C2 4.266 717.387 2.652 3.765 0.539 3527 

C3 6.080 442.537 4.368 4.448 0.213 12806 

Table 4.19:  Cluster centroid feature values for "Office product" category.  Bolded values indicate highest 

values. 

The cluster centroids in Table 4.19 tell us the general behavior of each cluster as a whole. 

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. 

Table 4.20 displays p-value from t-test of each attribute in three clusters with a 

sample size of about 3000. 

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 1.72893E-59 0.0002E-5 0 2.72097E-45 5.5505E-195 

C1 vs. C3 1.73745E-10 8.5285E-257 7.61643E-05 3.35378E-05 0 

C2 vs. C3 7.4868E-168 1.4426E-147 0 3.5642E-102 0 

Table 4.20:  t-Test result for clusters in “Office product” category.  Bolded values (all) are statistically 

significant, p < 0.05. 

From Table 4.20, we see that all of the features are statistically significant since p < 0.05. 

Based on the external and internal features there are again three types of clusters: (1) C1 



www.manaraa.com

 71 

referred as expert cluster (2) C2 referred as novice cluster, and (3) C3 referred as 

conscientious cluster.  Also, the characteristics of three clusters in office products are 

similar to Books, Electronics, and Cell phones and accessories because high overall leads 

to more helpfulness.  

Expert cluster C1 has the highest overall and helpfulness as seen in Table 4.19.  

Hence we can conclude that: 

Conclusion 4e: High overall leads to helpful reviews for Office product. 

Baby 

From Table 4.7, we know that there are 4 types of clusters in Baby category. Table 4.21 

depicts the values of the feature set of the centroid of each cluster. 

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulnes

s 

Observatio

ns 

C1 8.193 648.17 3.284 5.272 0.327 1139 

C2 11.195 679.791 4.394 6.144 0.589 1872 

C3 9.602 432.561 4.413 4.939 0.137 2008 

C4 8.41 1035.95 3.579 5.688 0.68 1014 

Table 4.21:  Cluster centroid feature values for "Baby" category.  Bolded values indicate highest values. 

The cluster centroids in Table 4.21 tell us the general behavior of each cluster as a whole. 

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. 

Table 4.22 displays p-value from t-test of each attribute in three clusters with a 

sample size of about 1000. 

 p-value 



www.manaraa.com

 72 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 6.90769E-38 0.024563075 0 2.87749E-22 4.11864E-45 

C1 vs. C3 2.28494E-14 3.22345E-60 0 1.05307E-07 2.0356E-284 

C1 vs. C4 0.343998611 2.39739E-59 3.3248E-184 3.89249E-05 0 

C2 vs. C3 2.56099E-11 4.1414E-128 0.096658381 8.37046E-51 0 

C2 vs. C4 9.80313E-28 3.7032E-55 4.552E-100 3.24056E-05 0 

C3 vs. C4 1.92226E-08 1.5035E-139 2.0361E-104 3.81957E-17 0 

Table 4.22:  t-Test result for clusters in “Baby” category. Bolded values (all) are statistically significant, p < 

0.05. 

From Table 4.22, we see that all of the features are statistically significant since p < 0.05. 

Based on the external and internal features there are again four types of clusters: (1) C1 

referred as novice cluster, (2) C2 referred as frequent positive expert cluster, (3) C3 

referred as conscientious cluster, and (4) C4 referred as non-frequent negative expert 

cluster. These clusters are similar to Health and personal care, and Grocery and gourmet 

food as they have two different types of experts.  

Baby product includes foods, milk bottles, diapers, wipers, etc. designed 

specifically for babies. New parents who are the biggest buyers of these products are very 

sensitive with regard to baby’s health, nutrition, and comfort so they buy the best of what 

is available in the market and try to avoid products with any negative consequences. The 

risk involved in buying negatively reviewed product is very high for baby products so 

they find negative reviews very helpful as it informs them of bad experiences.  

From Table 4.21, we see that for two expert clusters—(1) non-frequent negative 

expert (C4) and (2) frequent positive expert (C2), the review text length is highest and 

second highest respectively compared to other clusters. These values are statistically 

significant as seen in Table 4.22. Subsequently, the average helpfulness are highest and 

second highest for (1) non-frequent negative expert (C4) and (2) frequent positive expert 
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(C2), respectively. Hence, similar to Health and personal care, and Grocery and gourmet 

food we can draw following conclusion from this. 

Conclusion 4f: Longer reviews lead to helpful reviews for Baby products. 

Beauty 

From Table 4.7, we know that there are 4 types of clusters in Beauty category. Table 4.23 

depicts the values of the feature set of the centroid of each cluster.  

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulnes

s 

Observatio

ns 

C1 6.657 523.868 4.595 4.327 0.644 12138 

C2 6.497 569.676 3.294 4.376 0.605 6728 

C3 7.149 332.453 4.654 4.137 0.233 14803 

C4 6.954 395.392 3.452 3.452 0.239 9116 

Table 4.23:  Cluster centroid feature values for "Beauty" category.  Bolded values indicate highest values. 

The cluster centroids in Table 4.23 tell us the general behavior of each cluster as a whole. 

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. 

Table 4.24 displays p-value from t-test of each attribute in four clusters with a sample 

size of about 6000. 

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 0.155039331 9.11616E-12 0 0.343775814 2.50029E-83 

C1 vs. C3 3.31059E-05 0 7.53052E-42 7.69996E-09 0 

C1 vs. C4 0.005378707 4.4047E-161 0 0.193982005 0 

C2 vs. C3 7.04683E-07 0 0 2.87886E-09 0 

C2 vs. C4 0.000125949 1.4422E-179 2.66856E-94 0.043376118 0 

C3 vs. C4 0.218105277 1.30676E-60 0 1.23826E-05 0.003773504 

Table 4.24:  t-Test result for clusters in “Beauty” category.  Bolded values are statistically significant, p < 0.05. 

From Table 4.24, we see that all of the features are statistically significant since p < 0.05 

except total review count and total active month in C1 and C2, and total active month in 
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C1 and C4. Based on the external and internal features we interpret the clusters 

accordingly as described below. 

 Cluster C1 represents reviewers who have a moderate review count, greater review 

length, have more helpful reviews, have high overall and are active for long period of 

time. Based on their high interest for reviewing and the helpfulness of their reviews to 

other users, they constitute the expert cluster. Since they tend to write more positive 

reviews compared to cluster C2 (discussed below), which is also an expert cluster, we 

may refer to C1 as the positive expert cluster. 

 Cluster C2 represents reviewers who have a moderate review count similar to C1 

(positive expert), longest review length, have lowest overall and are active for longest 

period of time similar to C1 (positive expert) above. So we refer to this cluster as the 

expert. They have the lowest overall which means they tend to write their negative 

experiences with the product and we may refer to them as negative expert.  

 Cluster C3 is referred as the conscientious cluster. 

 Cluster C4 is referred as the novice cluster. 

Considering C2 as negative experts, they are similar to the one observed on 

Grocery and gourmet food, Health and personal care, and Baby products. Beauty 

products such as skin care products, hair products, make up products, personal care 

products and so on are sensitive products as they directly affect consumers’ health. So 

users want to know about both the positive and negative experiences and make a well-

informed decision whether to buy the product or not. One of the important observations 

that can be drawn from Table 4.23 is that for the two expert clusters that we identify—(1) 

positive expert (C1) and (2) negative expert (C2) —the average review text length is the 
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second highest and highest, respectively, compared to the other two clusters. These 

values are statistically significant as seen in Table 4.24. The average helpfulness are 

highest and second highest for positive expert (C1) and negative expert (C2) respectively.  

Hence we draw the following conclusion: 

Conclusion 4g: Longer reviews lead to helpful reviews for Beauty products. 

Pet supplies 

From Table 4.7, we know that there are 4 types of clusters in Pet supplies category. Table 

4.25 depicts the values of the feature set of the centroid of each cluster.  

Cluster 

number 

Total 

review 

count 

Average 

review 

length 

Average 

overall 

Total 

active 

month 

Average 

helpfulnes

s 

Observatio

ns 

C1 6.154 625.809 4.512 4.324 0.633 7730 

C2 5.728 668.536 3.161 4.168 0.604 4040 

C3 6.476 381.065 4.663 3.999 0.210 11393 

C4 6.0813 430.376 3.515 3.964 0.207 6553 

Table 4.25:  Cluster centroid feature values for "Pet supplies" category.  Bolded values indicate highest values. 

The cluster centroids in Table 4.25 tell us the general behavior of each cluster as a whole. 

Additional statistics of all features for each cluster in terms of minimum, maximum, 

mean, and standard deviation values is in the Appendix, Section B. Table 4.26 displays p-

value from t-test of each attribute in four clusters with a sample size of about 4000. 

 p-value 

Pairs Total review 

count 

Average 

review 

length 

Average 

overall 

Total active 

month 

Average 

helpfulness 

C1 vs. C2 2.72106E-09 6.00856E-07 0 1.2881E-06 7.08937E-10 

C1 vs. C3 0.002969659 0 6.1912E-153 9.33346E-23 0 

C1 vs. C4 0.629438083 9.4263E-177 0 1.61836E-18 0 

C2 vs. C3 1.35707E-23 9.2812E-229 0 0.000483534 0 

C2 vs. C4 2.88792E-09 2.0504E-143 2.0981E-241 0.005547747 0 

C3 vs. C4 0.000152592 1.06199E-34 0 0.599510205 0.002495584 

Table 4.26:  t-Test result for clusters in “Pet supplies” category.  Bolded values are statistically significant, p < 

0.05. 

From Table 4.26, we see that all of the features are statistically significant since p < 0.05 

except total review count in C1 and C4, and total active month in C2 and C4, and C3 and 
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C4. Based on the external and internal features there are again four types of clusters: (1) 

C1 referred as frequent positive expert cluster, (2) C2 referred as non-frequent negative 

expert cluster, (3) C3 referred as conscientious cluster, and (4) C4 referred as novice 

cluster. These clusters are similar to Health and personal care, and Baby as they have two 

different types of experts.  

Pet supplies consist of products like cat food, dog food, horse food, and related 

products such as cage for birds, activity tree for cat, playhouse for rabbit and so on. Pet 

owners are the biggest buyers of these products and are very sensitive to their pet’s health 

and well being so they buy the best of what is available in the market. They try to avoid 

products with any negative consequences. The risk involved in buying negatively 

reviewed product is very high for pet supplies so they find negative reviews very helpful 

as it informs them of any probable bad experiences. 

 From Table 4.25 we can see that for two expert clusters (1) frequent positive 

expert (C1), and (2) non-frequent negative expert (C2), reviews length is second highest 

and highest respectively. These values are statistically significant as seen in Table 4.26. 

Subsequently, the average helpfulness are highest and second highest for (1) frequent 

positive expert (C1) and (2) non-frequent negative expert (C2), respectively. Hence, 

similar to Health and personal care, and Grocery and gourmet food, Baby, and Beauty 

products we can conclude:  

Conclusion 4h: Longer reviews lead to helpful reviews for Pet supplies. 

4.3.3.3 Data cluster analysis- Step 3 (Summary) 

Below we summarize different types of clusters we have observed: 
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 All the nine categories of products have 3 different types of clusters: (1) expert, (2) 

novice, and (3) conscientious except for the Cell phones and accessories category. 

Cell phones and accessories are a very unique product type as they involve 

comparatively large investment and people with less technical skills are more 

comfortable buying these products in store after speaking with salesperson. We 

speculate that, as a result, these buyers who would have made the novice cluster tend 

to make in-store purchases and are missing from our data.  

 There are two types of experts in Health and personal care, Baby, and Pet supplies: 

(1) frequent expert, and (2) non-frequent expert. Frequent expert is similar to the 

expert clusters in Books, Electronics, and Cell phones and accessories. Non-frequent 

expert is, on the other hand, rather unique. These reviewers have a very short active 

period and a small number of review counts which together give an impression of 

early maturity. It indicates that these reviewers are good at reviewing from the very 

start. Unlike frequent experts, they don’t need time and experience to write helpful 

reviews. At the same time we have to note that non-frequent experts usually write 

negative reviews which may make their reviews helpful in these categories. Users are 

very careful when purchasing products with health concerns like Health and personal 

care, and Baby products so they find negative reviews more helpful in this regard.  

See discussion below. 

 There are two types of experts in Health and personal care, Grocery and gourmet 

food, Baby, Beauty, and Pet supplies: (1) positive expert, and (2) negative expert. 

Experts who usually give high overall to products are referred as positive experts as 

their reviews explain the positive or satisfactory effects of products. Negative experts 
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are those who share their dissatisfaction with products. Both positive and negative 

reviews tend to be helpful to users specially when they are related to human/animal 

health. 

Now, we know that that there are different types of clusters in different categories such as 

experts, frequent experts, positive experts and so on. Existence of different types of 

experts show that helpfulness of reviews is determined by various other attributes such as 

positive/negative review, length of review, and so on. Specifically two attributes—overall 

(rating) and review length—have a prominent effect on helpfulness so we claim two 

hypotheses and list the categories that abide by each hypothesis. 

Hypothesis/claim Categories list 
H1. High overall leads to helpful reviews Books 

Electronics 

Cell Phones and accessories 

Office product 

H2. Longer reviews leads to helpful reviews Health and personal care 

Grocery and gourmet food 

Baby 

Beauty 

Pet supplies 

Table 4.27:  Two hypotheses and categories that meet each hypothesis. 

Table 4.27 lists two key attributes, overall (rating) and review length, that have 

prominent effect on helpfulness. These two claims are supported by a number of 

categories. Expert reviewers clusters in categories such as Books, Electronics, Cellphones 

and accessories, and Office products usually has the highest overall which are highlighted 

in conclusion 4a and 4e. This shows a direct effect of overall on helpfulness. In other 

words, higher overall leads to more helpful reviews and lower overall leads to less 

helpful reviews.  

Categories such as Health and personal care, Grocery and gourmet food, Baby, 

Beauty, and Pet supplies show a direct effect of review length on helpfulness. 
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Conclusions 4b, 4c, 4f, 4g, and 4h  highlight the effect of review length on Health and 

personal care, Grocery and gourmet food, Baby, Beauty, and Pet supplies, respectively. 

Usually when a user evaluates a product review, they may activate a regulatory 

system that is congruent with the consumption goal. As stated in Chapter 2, there are two 

separate systems to process product information: one that calls on the promotion system 

to identify useful information for achieving desirable outcomes and the other that calls on 

the prevention system to identify useful information for avoiding undesirable outcomes 

(Zhang et al., 2010). Users with promotion goal are more concerned with advancement 

and achievement through product consumption. For the three product categories (Books, 

Electronics, Cellphones and accessories) we can say that user activates promotion 

consumption goal since people usually want to read or use positively reviewed products 

when it comes to books, electronics, cellphones and office products. For these types of 

product, users prefer top-of-the-chart products. A real book lover would not want to miss 

any best sellers even when there are negative reviews about them. Similarly, a tech-lover 

would want to try highly recommended electronics, cellphones and accessories. They are 

not very concerned about the minor flaws of these products, if any, because there is not 

high risk associated with buying a wrong product. For these products a review with 

higher overall is perceived as more helpful. Reviews with high overall represent positive 

product reviews, which provide information about satisfactory experiences with the 

product, and thus represent opportunities to attain positive outcomes. These reviews are 

perceived to be more helpful for users with promotion consumption goal.  

Conversely, for users who evaluate products associated with prevention 

consumption goals perceive negative reviews to be more persuasive than positive ones 
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(Zhang et al., 2010). For products such as Health and personal care, Grocery and gourmet 

food, and Baby, Beauty, and Pet supplies, we observed that negative overall is associated 

with high helpfulness. With products that are important to consumer in at a personal level 

such as Health and personal care, Grocery and gourmet food, Baby, Beauty, and Pet 

supplies, consumers are usually more cautious. They read through negative reviews 

because they want to avoid negative consequences as much as possible. The penalty 

associated with any bad reviews if true outweighs the benefits of positive reviews. 

Therefore, consumers are risk averse for this kind of products. So they also find longer 

in-depth reviews with negative reviews helpful in addition to positive ones. Hence we can 

say that user activates prevention consumption goal when it comes to Health and personal 

care, Grocery and gourmet food, Baby, Beauty, and Pet supplies. 

For products associated with promotion consumption goals, positive reviews are 

more helpful than negative ones whereas for products associated with prevention 

consumption goals, negative reviews are more helpful than positive ones.  We can deduce 

that perceived helpfulness of a review depends on consumption goal and thus on product 

type. So apart from feature set explained in Section 4.3.1, we should also consider 

product type when analyzing the helpfulness of reviews. 

4.4  Data classification 

In Section 4.3 we discussed a three-step clustering and interpretation process: (1) feature 

extraction, (2) clustering using X-means, and (3) cluster interpretation and analysis in 

identifying particular classes such as experts, novices, and conscientious. In this section, 

we create a classifier that is capable of predicting a new reviewer into one of the 

aforementioned classes based on the feature set of the reviewer.  
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4.4.1 Data classification using J48 

In Section 2.3, we discussed the advantages of using decision tree such as high 

computational efficiency, easy to understand, and clear rules. We use J48 implementation 

of C4.5 algorithm for our classification. C4.5 was developed by Ross Quinlan and is used 

to build decision trees using the concept of Information Entropy (Quinlan, 1993). C4.5 

provides computing efficiency, deals with continuous values, handles attributes with 

missing values, and avoids over fitting by pruning trees after creation (Deepti, et al., 

2010).  

To build a decision tree, a training data set, 𝑆 = 𝑠1, 𝑠2 …   of classified samples is 

required. Each sample 𝑠 = 𝑥1, 𝑥2 … is a vector where 𝑥1, 𝑥2 … represent features of the 

sample. At each node of the tree, J48 chooses one feature of the data that most effectively 

splits its set of samples into subset belonging in one class or the other. The splitting is 

performed based on the normalized information gain, which is the difference in entropy, 

that results from choosing an attribute (Kumar and Rathee, 2011). The attribute with the 

highest normalized information gain is chosen to make the decision. This process then 

recurs on the smaller subtrees. The decision is grown using depth-first strategy. 

In our case, the training data is a set 𝑆 = 𝑠1, 𝑠2 … of reviewers already classified 

into one of the classes such as expert, novice, or conscientious. Each reviewer 𝑠 =

𝑥1, 𝑥2 … 𝑥7 is a vector where 𝑥1, 𝑥2 … 𝑥7 represent nine features of the reviewer listed in 

Table 4.6. We use the data as training set and build a J48 pruned decision tree that will be 

able to classify new reviewer into one of the classes based on their features. As 

recommended by WEKA, we use default value of 0.25 pruning confidence, 3 folds for 
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reduced error pruning, and minimum of 2 instances per leaf for this tree(Bouckaert et al., 

2013). 

For the Books category, its decision tree was trained with 315,323 instances of 

classified reviewers. The pruned J48 tree obtained has total of 705 nodes, also referred as 

tree size and contains 353 leaves. We analyzed the J48 pruned decision tree to find which 

feature is used to split the data at each level. 

 

 
Figure 4.10: First three level of J48 pruned tree of the “Books” category. 

Figure 4.3 shows that average overall has the highest normalized information gain and it 

is used to split the data at root level. At level 2, the factor average helpfulness is used for 

splitting which means the information gain of average helpfulness is highest at this level.  

The fact that average overall (root node) has the highest normalized information gain 

indicates that average overall is the most important feature and its value has the highest 

weightage in the classification of a new reviewer.  

Similarly for Electronics, and Cell phones and accessories, average overall has 

the highest normalized information gain and is the root node in respective decision trees. 

The decision trees for all the categories are presented in the Appendix, Section C.  
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The summary of the decision tree analyses for all the categories is presented in Table 

4.28.  

Category Number of 

training instances 

Number of 

leaves 

Tree size 

(# internal nodes 

+ # leaves) 
Books 315323 353 705 

Electronics 146157 204 407 

Cell Phones and accessories 21686 52 103 

Health and personal care 70669 79 157 

Grocery and gourmet food 34711 121 241 

Office product 23099 55 109 

Baby 6033 102 203 

Beauty 42785 53 105 

Pet supplies 29716 48 95 

Table 4.28:  Summary of decision tree classifiers for all categories. 

We now summarize J48 decision tree for each of the nine product categories. For 

each decision tree, Table 4.29 provides the list of features used in decision nodes at the 

tree’s top three level. 

Categories list Features at 

Level 1 

Features at 

Level 2 

Features at 

Level 3 
Books average overall average helpfulness average overall, and 

average helpfulness 

Electronics average overall average overall, average 

helpfulness 

average helpfulness 

Cell Phones and accessories average overall average overall average helpfulness 

Health and personal care average helpfulness average overall average helpfulness 

Grocery and gourmet food average helpfulness average overall average overall, and 

average helpfulness 

Office product average helpfulness average overall average overall, and 

average helpfulness 

Baby average helpfulness average overall, average 

helpfulness 

average overall, average 

helpfulness, and total 

active month 

Beauty average helpfulness average overall average helpfulness, and 

average overall 

Pet supplies average helpfulness average overall average helpfulness, and 

average overall 

Table 4.29:  Features used in top 3 level of decision nodes 

From Table 4.29 we see that different features such as average overall, average 

helpfulness, and total active month are used in different levels of a decision tree. On 
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expanding such a decision tree, we could also observe other features like average review 

length and total review count as we go deeper in the tree, closer to leaves. 

Observing the root node of decision trees for each of the nine product categories 

in Table 4.29 we can say that average overall and average helpfulness are the two most 

important features for the classification of reviewers. Specifically, Table 4.30 displays the 

most important feature and the respective product category and their product 

consumption goal. 

Distinguishing feature Categories list 
Average overall Books (Promotion consumption goal) 

Electronics (Promotion consumption goal) 

Cell Phones and accessories (Promotion consumption goal) 

Average helpfulness Health and personal care (Prevention consumption goal) 

Grocery and gourmet food(Prevention consumption goal) 

Office product (Promotion consumption goal) 

Baby (Prevention consumption goal) 

Beauty (Prevention consumption goal) 

Pet supplies (Prevention consumption goal) 

Table 4.30:  Two most important distinguishing features and their respective categories 

 

The value of overall is the most important factor in classification of reviewers for 

products such as Books, Electronics, and Cell phones and accessories. Average overall is 

the rating that reviewer themselves assign to the product being reviewed. A reviewer with 

high average overall is someone who mostly purchases good products and shares 

satisfactory experiences in the reviews. Whereas a reviewer with lower overall is 

someone who mostly purchases bad products and shares dissatisfactory experiences in 

the reviews. This finding supports the conclusion that we made in Section 4.3.2.3 in 

Table 4.27—higher overall leads to helpful reviews for products like Books, Electronics, 

and Cell phones and accessories. For products like Books, Electronics, and Cell phones 

and accessories, overall is the most important differentiating factor to determine 

helpfulness and classify reviewers. 
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4.4.2 Classification accuracy 

In this section, we present and analyze the classification accuracies of the J48 classifiers 

in each product category. We use a 10-fold cross validation technique to estimate the 

classification accuracies. In a 10 fold cross validation, the original dataset is randomly 

partitioned into 10 equal-size sub-datasets. Out of the 10 sub-datasets, 9 sub-datasets are 

used as training data and the remaining 1 sub-dataset is retained as the validation data for 

testing the classifier. This process is repeated for 10 times, with each sub-datasets used 

exactly once as the validation data. The result is then summed to produce a single 

estimation. 

Then we generate a confusion matrix to measure the performance of each 

classification model. Each column of the matrix represents the instances in a predicted 

class while each row represents the instances in an actual class (Powers, 2011). 

For the Books category, for example, we can see that the J48 classifier is highly 

accurate with 99.82% correct predictions, as shown in Table 4.31. For each class of 

reviewers—expert, conscientious and novice, the true positive rate is 0.998 or better. This 

shows that the feature set we chose for clustering is very effective in classifying 

reviewers into different classes. The confusion matrix for this experiment is presented in 

Table 4.31 and other class-wise precision analysis like true positive, false positive, 

precision, recall, and F-measure are presented in Table 4.32.  

Classified as C1 (conscientious) C2 (expert) C3 (novice) 
C1 (conscientious) 93307 43 88 

C2 (expert) 88 128938 138 

C3 (novice) 76 128 92517 

Table 4.31:  Confusion matrix for the “Books” category. 

Class TP Rate FP Rate Precision Recall F-Measure 
C1 (conscientious) 0.999 0.001 0.998 0.999 0.998 

C2 (expert) 0.998 0.001 0.999 0.998 0.998 

C3 (novice) 0.998 0.001 0.998 0.998 0.998 
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Table 4.32: Detailed accuracy by class for the “Books” category. 

The confusion matrices for all the categories can be found in the Appendix, Section D. 

The weighted average accuracy for each category is listed in Table 4.33.  

Category list TP Rate FP Rate Precision Recall F-Measure 
Books 0.998 0.001 0.998 0.998 0.998 

Electronics 0.998 0.001 0.998 0.998 0.998 

Cell Phones and accessories 0.997 0.004 0.997 0.997 0.997 

Health and personal care 0.999 0.000 0.999 0.999 0.999 

Grocery and gourmet food 0.995 0.002 0.995 0.995 0.995 

Office product 0.998 0.001 0.998 0.998 0.998 

Baby 0.966 0.012 0.966 0.966 0.966 

Beauty 0.998 0.001 0.998 0.998 0.998 

Pet supplies 0.997 0.001 0.997 0.997 0.997 

Table 4.33: Weighted average accuracies of all categories. 

The key for Table 4.33 appears below: 

TP Rate – the true positive rate in terms of correctly identifying reviewer class (true 

positive / (true positive + false positive)). 

FP Rate – the false positive rate in terms of incorrectly identifying reviewer class (false 

positive / (true positive + false positive)). 

Precision – the precision is the fraction of positively classified reviewers that are 

relevant. 

Recall – the recall is the fraction of relevant reviewers that are classified. 

F-measure – the weighted average of precision and recall, where 1 is the best score and 0 

is the worst score. 

4.5  Summary 

In this Chapter, we performed clustering and classification to demonstrate how we were 

able to find different classes of reviewers and different attributes in the reviews that 

affected their perceived helpfulness across various product types. Using the helpfulness 

as a quality metric and frequency of review as a quantity metric we demonstrated that 
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reviewers can have highest level of maturity known as expert reviewers and lowest level 

of maturity known as novice reviewers and any level between them.   

In Section 4.3, we performed clustering on reviewers and then labeled these 

clusters into different classes that reflect the expertise of reviewers such as novice, 

conscientious and experts, based on the features of each clusters. We then use this data to 

build classifier for categorizing reviewers into one of the aforementioned classes. Hence 

we achieved Objective 1: Demonstrate that reviewers can be either expert or novice by 

performing data clustering and then doing data analysis to identify attributes that make 

them expert or novice. We will use the quality and quantity of reviews as metrics to 

define expert and novice reviewers. Differentiating different classes of reviewers will 

help to further understand the behavior of each class over time and over different product 

type.  

In Section 4.4, we created a J48 decision tree to identify the rules or features that 

help to predict reviewer class. We achieved Objective 2: Demonstrate that a number of 

features like review length, overall (rating), helpfulness, etc. affect review classification 

by developing decision tree for data classification to find features that differentiates 

clusters from one another. Understanding what roles which features play more 

importantly than others to perform classification will help us more accurately predict 

reviewer class.  

In Section 4.3.2.3, we analyzed reviewers across different product categories to 

understand if the perceived helpfulness of a review is affected by product categories. 

These products are diverse in terms of their consumed goal and usage. Hence we 

achieved Objective 3: Demonstrate that reviews are valued differently across different 
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product categories by performing clustering on reviewers on diverse product categories 

such as (1) Books, (2) Electronics, (3) Cellphones and accessories, (4) Health and 

personal care, (5) Grocery and gourmet food, (6) Office product, (7) Baby, (8) Beauty, 

and (9) Pet supplies. Understanding that reviews are valued differently across different 

product types will help us identify salient features for each category, implying that any 

recommendation systems would have to consider different products could demand 

different solutions.  

Utilizing the aforementioned findings, we have obtained insights for building our 

proposed recommendation system framework that centers around (1) reviewers, and (2) 

products. The recommendation system framework is capable of training reviewers by 

recommending actions that would help them write better quality reviews. As stated in 

Objective 1, reviewers differ from one another in the level of reviewing expertise 

,varying from expert level to novice level. Therefore, different classes of reviewers may 

need to work on different skill sets to become better at reviewing; for example, some 

reviewers may require to write review frequently whereas others may require to write 

informative reviews. In Chapter 5, we will first investigate if each class of reviewers 

evolve over time and then train reviewers who are lagging behind by leveraging the 

actions of expert reviewers.  

As stated in Objective 3, products vary from one another as they are associated 

with different consumption goals- promotion and prevention. Reviews targeted for 

products with different consumption goals need to emphasize on different features; for 

example, review length for some categories whereas overall for others. Therefore, in 

Chapter 5, we will emphasize on review features according to the product category when 
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we design recommendation system framework. We will be using product related findings 

that are highlighted in Table 4.34 to design recommendation system framework in 

Chapter 5. 

Findings References 
Higher overall leads to helpful reviews for products associated with promotion 

consumption goal such as Books, Electronics, Cell Phones and accessories, and 

Office product 

H1 (Table 

4.27) 

Longer review leads to helpful reviews for products associated with prevention 

consumption goal such as Grocery and gourmet food, Health and personal care, 

Baby, Beauty, and Pet supplies. 

H2 (Table 

4.27) 

Expertise for reviewing Grocery and gourmet food does not necessarily come with 

practice and experience. 

Conclusion 4d 

Table 4.34:  Product related finding and their references. 
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Chapter 5       
Recommendation System 

Framework 
 

As stated in Chapter 1, one of our main goals in this Thesis after differentiating reviewers 

based on the quality of their reviews is to devise an approach to leverage expert 

reviewers’ behaviors to help train novice reviewers effectively and efficiently. In this 

chapter we propose a recommendation system framework that trains novice to follow the 

action sequence of expert in order to improve their reviewing skill.  

First, we find whether each class of reviewers evolves or changes over time, in 

terms of their reviewing skills, and if yes, how each class changes.  Understanding 

reviewer evolution process will provide insights on how reviewers are evolving on their 

own without any training. Also, we can answer which phase of their evolution our 

recommendation system framework should facilitate. Second, we perform a sentiment 

analysis on the review text to understand the tone used by different classes of reviewers. 

We want to understand whether different classes of reviewers use a different tone and 

how that affects review helpfulness. McAuley et al., (2013) points out that there is a 

strong relation with “expertise” from the light of linguistic development. If there is a 

relation between review tone and review helpfulness in expert reviewer class, then we 

can learn from experts and make appropriate tone recommendations to novices and help 

them write better reviews. Third, we present an architecture that recommends actions 
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from experts to train the reviewer who is lagging behind. We pursue the following series 

of objectives below:  

1. Objective 4: Demonstrate that reviewers evolve with time by performing graph 

analysis of review helpfulness over time. The pattern of reviewer evolution would 

present insights on how different classes of reviewers evolve with time. It would 

help to answer if it is possible for a novice or conscientious reviewer to become 

an expert reviewer with time. 

2. Objective 5: Demonstrate that expert, novice, and conscientious reviewers use 

different tones while reviewing by performing sentiment analysis on review text. 

The sentiment analysis of review texts would present insights on which tone is 

used by experts in certain product type. Novice reviewers can be recommended to 

use the same tones as the experts to make their reviews more helpful.   

3. Objective 6: Demonstrate that actions of experts can be leveraged to train novice 

reviewers to write good quality reviews. Experts’ actions together with the 

product-specific review features are combined to make appropriate review 

recommendations. 

 

5.1 User evolution 

We know that helpfulness is a measure of how useful/helpful the review is from other 

users’ perception. Helpfulness of a review measures the worthiness of the review to other 

users. So we investigate the trend of helpfulness in different classes to find if reviewers 

are maturing—i.e., becoming more expert in writing useful/helpful reviews—over time. 

 Our objective in this experiment is Objective 4: Demonstrate that reviewers 

evolve with time by performing graph analysis of review helpfulness over time. The 
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pattern of reviewer evolution would present insights on how different classes of 

reviewers evolve with time. It would help to answer if it is possible for a novice or 

conscientious reviewer to become an expert reviewer with time. 

5.1.1 Setup 

We first detect outliers, and remove them from dataset, before plotting average 

helpfulness of reviewers over time. Outliers may cause a negative effect on data analyses, 

or may provide useful information about data when we look into an unusual response to a 

given study  (Seo, 2006).  We want to observe the evolution trend of each class–expert, 

novice and conscientious, thus it is important that we remove outliers of each class to 

understand the evolution trend of core reviewers. In each class, majority of reviewers 

follow similar behavior in terms of frequency of reviewing, review length, review 

helpfulness, review rating and active month, but there might be a small number of 

outliers that have unusually large or small values compared to others in the same class or 

cluster.  

First, we detect outliers by determining an interval spanning over the mean 

plus/minus two standard deviations. 95.45% of values lie within a band around the mean 

in normal distribution with a width of two standard deviation. Below is the mathematical 

notation, where 𝑥 is any observation from normally distributed random values, 𝜇 is the 

mean of the distribution and 𝜎 is its standard deviation. 

𝑝𝑟(𝜇 − 2𝜎 ≤ 𝑥 ≤ 𝜇 + 2𝜎) ≈ 0.9545 

We detect and remove outliers from each class of all categories. Table 5.1 shows 

reviewer count in each class before and after removing outliers. 
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Category Reviewer class Reviewer 

count 

before 

removing 

outliers 

Reviewer 

count after 

removing 

outliers 

Percentage 

of 

reviewer 

count after 

removing 

outliers 
Books C1 (conscientious) 419721 333757 79.518% 

C2 (expert) 559123 462749 82.763% 

C3 (novice) 353758 295907 83.646% 

Electronics C1 (novice) 106666 86604 81.191% 

C2 (expert) 205839 170339 82.753% 

C3 (conscientious) 231271 197256 85.292% 

Cell Phones & 

accessories 

C1(conscientious) 39018 20786 81.682% 

C2(expert) 26050 20919 80.303% 

Health & personal 

care 

C1 (frequent positive expert) 62264 51037 81.968% 

C2 (non-frequent negative expert) 29855 23514 78.760% 

C3 (conscientious) 61970 54223 87.498% 

C4 (novice) 39792 32145 80.782% 

Grocery & 

gourmet food 

C1 (conscientious) 35326 30663 86.800% 

C2 (positive expert) 21384 17036 79.667% 

C3 (novice) 29285 23415 79.955% 

C4 (negative expert) 15101 12107 80.173% 

Office product C1 (expert) 22032 17691 80.296% 

C2 (novice) 10047 7675 76.390% 

C3 (conscientious) 35377 28919 81.745% 

Baby C1 (novice) 3152 3152 100% 

C2 (frequent positive expert) 5573 5573 100% 

C3 (conscientious) 5063 5063 100% 

C4 (non-frequent negative expert) 3055 3055 100% 

Beauty C1 (positive expert) 12138 10607 87.386% 

C2 (negative expert) 6728 5479 81.435% 

C3 (conscientious) 14803 13394 90.481% 

C4 (novice) 9116 7646 83.874% 

Pet supplies C1 (frequent positive expert) 7730 6585 85.187% 

C2 (non-frequent negative expert) 4040 3296 81.584% 

C3 (conscientious) 11393 10218 89.686% 

C4 (novice) 6553 5499 83.915% 

Table 5.1: Reviewer count in each class before and after removing outliers 

Then, after removing the outliers, we find the average helpfulness value of each year for 

each class. This allows to plot a graph of how average helpfulness changes over time for 

each year.   If helpfulness in a class increases then we can say that reviewers in the class 

mature over time. Whereas if helpfulness of a class decreases then we can say that 

reviewers in the cluster do not mature over time.  We perform this analysis for all nine 

categories.  
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5.1.2 Discussion 

Here we report on our change analysis of helpfulness for all nine product categories 

which are divided into two sets of products—promotion consumption goal and 

prevention consumption goal—based on Section 4.3.2.3.  

We first perform this analysis on products associated with promotion consumption 

goal such as Books, Electronics, Cellphones and accessories, and Office product.  Here 

we present the results on Books, and provide the others in the Appendix, Section E. From 

Chapter 4, we know that there are three classes of reviewers in Books: (1) conscientious, 

(2) expert, and (3) novice. For each class, we calculate the average helpfulness of all 

reviews written by reviewers belonging to the particular class with respect to time (in 

year). Table 5.1 shows the average helpfulness values of the three classes for each year. 

 Average helpfulness 

Year count Conscientious Expert Novice 
1 0.744 0.877 0.787 

2 0.754 0.891 0.806 

3 0.758 0.897 0.817 

4 0.759 0.898 0.820 

5 0.762 0.896 0.823 

6 0.765 0.894 0.821 

7 0.768 0.894 0.812 

8 0.768 0.894 0.816 

9 0.787 0.891 0.811 

10 0.772 0.893 0.828 

11 0.786 0.900 0.814 

12 0.777 0.935 0.836 

13 0.801 0.885 0.825 

14 0.854 0.911 0.856 

15 0.884 0.935 0.845 

16 0.979 0.959  

17  0.967  

Table 5.2: Average helpfulness of three clusters in each active year for "Books" category 

We can observe from Table 5.2 and its respective plot in Figure 5.1 that the average 

helpfulness of all three classes of reviewers increases with time but the rate of this growth 
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is different for different classes. Below are the linear equations for each trend line and 

error in Books. 

𝐶𝑜𝑛𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑜𝑢𝑠: 𝑦 = 0.010𝑥 +  0.709;  𝑅2 = 0.685  

𝐸𝑥𝑝𝑒𝑟𝑡: 𝑦 = 0.003𝑥 + 0.87;  𝑅2 = 0.596 

𝑁𝑜𝑣𝑖𝑐𝑒: 𝑦 = 0.002𝑥 +  0.799;  𝑅2 = 0.597 

 
Figure 5.1: Trend of average helpfulness over time for three clusters in "Books" category 

 
 Conscientious Vs. Expert Conscientious Vs. Novice Expert Vs. Novice 

p- value 4.2756E-08 0.0221 3.5787E-13 

Table 5.3: t-Test result for change on helpfulness in clusters in “Books” category.  Bolded values (all) are 

statistically significant, p < 0.05. 

The average helpfulness of conscientious reviewer increases at a faster rate than that of 

expert reviewers and that of expert reviewers increases faster than novice’s. This increase 

is statistically significant as observed from t-test in Table 5.3.  

The trend of each classes in products categories related with promotion 

consumption goal are listed below in Table 5.4.  In the beginning, conscientious 

reviewers have the least average helpfulness compared to other classes.  Then they show 

a gradual increase in average helpfulness over time. After 15 years, they reach the same 
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level as the expert reviewers. Meanwhile, novices generally start with a higher average 

helpfulness value than conscientious but they never grow enough to reach the same level 

as expert reviewers even after 15 years of reviewing.  

Taking together Tables 5.3 and 5.4, we see that the p-value is less than 0.05 which 

verifies that helpfulness of conscientious reviewer grows faster than expert reviewer 

(0.010 > 0.003, Table 5.4). Similarly, helpfulness of expert reviewers grows faster than 

novices (0.003 > 0.002, Table 5.4).   

Category Reviewer class Linear equation of 

trend line 
 𝑅2 error 

Books C1 (conscientious) 𝑦 = 0.010x +  0.709 0.685 

C2 (expert) 𝑦 = 0.003𝑥 + 0.872 0.596 

C3 (novice) y = 0.002x +  0.799 0.597 

Electronics C3 (conscientious) 𝑦 =  0.007𝑥 +  0.870 0.690 

C2 (expert) 𝑦 =  0.0016𝑥 +  0.909 0.837 

C3 (novice) 𝑦 =  0.0015𝑥 +  0.861 0.683 

Cell Phones & 

accessories 

C1 (conscientious) 𝑦 =  0.014 +  0.802 0.728 

C2 (expert) 𝑦 =  0.007𝑥 +  0.868 0.778 

Office product C3 (conscientious) 𝑦 =  0.015𝑥 +  0.834 0.706 

C1 (expert) 𝑦 =  0.0016𝑥 +  0.912 0.711 

C2 (novice) 𝑦 =  0.0015𝑥 +  0.853 0.786 

Table 5.4: Linear equation of trend line for each reviewer class in product categories belonging to promotion 

consumption goal. 

In Table 5.4, fourth column denotes coefficient of determination referred as 𝑅2 error 

which is a statistical measure of how well observed outcomes i.e., 𝑦 are predicted by the 

model based on the variance in the outcomes explained by the model (Draper and Smith, 

1998). In other words, how close the data are to the fitted trend line. The value of 

 𝑅2 error ranges from 0 to 1 where 0 denotes that the dependent variable (𝑦) cannot be 

predicted from the independent variable (𝑥), and 1 denotes that the dependent variable (𝑦) 

can be predicted without error from the independent variable (𝑥). In Table 5.4, we can 

observe that trend line predicts least accurately for Books experts (59%) and most 

accurately for Electronics experts of (83%). For all reviewer classes  𝑅2 error is greater 
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than or equal to 0.59 which means that 59 percent or more of the variation in 𝑦 is 

predictable from 𝑥. Looking at  𝑅2 error we can tell that although the predicted 𝑦 in Table 

5.4 are not 100% accurate, it is a good prediction because the predicted 𝑦 is the average 

helpfulness which is the number of “up” votes provided by human readers who find the 

review helpful. Because it is very difficult to predict human actions the  𝑅2 error of 

greater than or equal to 0.59 is a very good prediction. In general, for products associated 

with promotion consumption goal from Table 5.4, we observe that: 

 Increase in average helpfulness of conscientious reviewers is the fastest compared 

to other classes. 

 Increase in average helpfulness of expert reviewers is slower than conscientious 

reviewers but faster than novice reviewers.  

 Average helpfulness of novice remains constant.  

We performed t-test to check the statistical significance of the above observations. The 

details of this below in Table 5.5: 

Category Conscientious 

Vs. Expert 

Conscientious Vs. 

Novice 

Expert Vs. Novice 

Books 4.2756E-08 0.0221 3.5787E-13 

Electronics 0.3580 0.0001 2.3980E-07 

Cell Phones & accessories 0.1631 NA (only 2 clusters) NA (only 2 clusters)__ 

Office product 0.0717 0.0078 0.0017 

Table 5.5: t-Test result for change in helpfulness in each reviewer class in product categories belonging to 

promotion consumption goal.  Bolded values are statistically significant, p < 0.05. 

Note that in Cell phones and accessories, there are only two clusters – 

conscientious and experts. From Table 5.5, we can see that the increase in average 

helpfulness of conscientious cluster is not statistically significant when compared with 

expert cluster. So based on t-test and the trend lines in Table 5.4 we can make the 

following conclusions:  
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 Conscientious: Increase in average helpfulness of conscientious reviewers is 

either faster than (Books: 0.010 > 0.003, Table 5.4) or similar to expert 

reviewers (Electronics: 0.007 ≅ 0.001; Cell Phones and accessories: 0.014 ≅

0.007; Office product: 0.015 ≅ 0.001, Table 5.4). 

 Expert: Increase in average helpfulness of expert reviewers is always faster than 

novice users (Books: 0.003 > 0.002; Electronics: 0.0016 > 0.0015; Office 

product: 0.0016 > 0.0015, Table 5.4).  

 Novice: Increase in average helpfulness of novice reviewers is the least with 

respect to conscientious and expert cluster (Books: 0.002; Electronics: 0.0015; 

Office product: 0.0015, Table 5.4).  

Having performed the analysis on promotion consumption goal-related products, 

we now perform the same analysis on products related to prevention consumption goal 

such as Health and personal care, Grocery and gourmet food, and Baby product.  Here we 

look at Health and personal care products to illustrate our findings.  Details about other 

products can be found in Appendix, Section E. 

Now, we know that, from Table 4.7, there are four classes of reviewers in Health 

and personal care: (1) novice, (2) conscientious, (3) frequent positive expert, and (4) non-

frequent negative experts. 

For each class, we generate Figure 5.2 in the same way as we did with Figure 5.1.  
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Figure 5.2: Trend of average helpfulness over time for three clusters in "Health and personal care" category 

Below are the linear equations of trend line and error from Figure 5.2. 

𝐶𝑜𝑛𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑜𝑢𝑠: 𝑦 =  0.012𝑥 +  0.832;  𝑅2 = 0.926 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑒𝑟𝑡: 𝑦 =  0.008𝑥 +  0.886;  𝑅2 = 0.641 

𝑁𝑜𝑣𝑖𝑐𝑒: 𝑦 =  0.005𝑥 +  0.767;  𝑅2 = 0.760 

𝑁𝑜𝑛 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑒𝑟𝑡: 𝑦 =  0.015𝑥 +  0.793;  𝑅2 = 0.759 

The increase in average helpfulness is the fastest in non-frequent negative expert 

reviewers, followed by conscientious reviewers, followed by frequent positive expert 

reviewers, and rounded out by novice reviewers. At the start, non-frequent negative 

expert reviewers have average helpfulness less than both frequent positive expert 

reviewers and conscientious reviewers.  Then, they show a gradual increase in average 

helpfulness over time. After 7 years, they surpass frequent positive expert and 

conscientious reviewers. Meanwhile, novices start with the least average helpfulness and 

they remain as such for 8 years. We then perform t-test to check if the observations we 

made are statistically significant. Details of t-test are presented in Table 5.6: 
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 Conscientious 

vs. Frequent 

positive expert 

Conscientious 

vs. Non-frequent 

negative expert 

Conscientious 

vs. Novice 

Frequent 

positive 

expert vs. 

Non-

frequent 

negative 

expert 

 

Non-

frequent 

negative 

expert vs. 

Novice 

Frequent 

positive 

expert vs. 

Novice 

p- 

value 
0.0074 

 

 

0.3323 

 

8.6786E-07 

 

 

0.0268 

 
0.0003 

 
1.441E-07 

 

Table 5.6: t-Test result for change in helpfulness in clusters in “Health and personal care” category.  Bolded 

values are statistically significant, p < 0.05. 

From Table 5.6 and 5.7, we can see that increase in average helpfulness of conscientious 

and non-frequent negative expert are not statistically significant i.e., they both grow at a 

similar rate (0.012 ≅ 0.015, Table 5.7). On the other hand, the other differences are 

statistically significant.  Frequent positive expert reviewers grow at a slower rate than 

both conscientious and non frequent negative expert reviewers (0.008 < 0.012; 0.008 <

0.015, Table 5.7); and at a faster rate than novice reviewers (0.008 > 0.005, Table 5.7). 

Novice reviewers have the slowest growing rate (0.005, Table 5.7). 

Finally, the trends and errors of all classes in product categories related with 

prevention consumption goal are listed below in Table 5.7. 

Category Reviewer class Linear equation of 

trend line 
 𝑅2 error 

Grocery & gourmet 

food 

C1 (conscientious) 𝑦 =  0.018𝑥 +  0.846 0.920 

C2 (positive expert) 𝑦 =  0.010𝑥 +  0.833 0.744 

C3 (novice) 𝑦 =  0.001𝑥 +  0.889 0.707 

C4 (negative expert) 𝑦 =  0.013𝑥 +  0.766 0.742 

Health & personal 

care 

C3 (conscientious) 𝑦 =  0.012𝑥 +  0.832 0.926 

C1 (frequent positive expert) 𝑦 =  0.008𝑥 +  0.886 0.641 

C4 (novice) 𝑦 =  0.005𝑥 +  0.767 0.760 

C2 (non-frequent negative expert) 𝑦 =  0.015𝑥 +  0.793 0.759 

Baby C3 (conscientious) 𝑦 =  0.012𝑥 +  0.782 0.555 

C2 (frequent positive expert) 𝑦 =  −0.008𝑥 +  0.862 0.416 

C1 (novice) 𝑦 =  −0.010𝑥 +  0.812 0.196 

C4 (non-frequent negative expert) 𝑦 =  −0.007x +  0.8900 0.241 

Pet supplies C1 (frequent positive expert) 𝑦 =  0.0098𝑥 +  0.912 0.740 

C2 (non-frequent negative expert) 𝑦 =  0.0097𝑥 +  0.8642 0.865 

C3 (conscientious) 𝑦 =  0.013𝑥 +  0.8887 0.661 

C4 (novice) 𝑦 =  0.0091x +  0.8371 0.623 

Beauty C1 (positive expert) 𝑦 =  0.0127𝑥 +  0.861 0.840 
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C2 (negative expert) 𝑦 =  0.0206𝑥 +  0.7902 0.586 

C3 (conscientious) 𝑦 =  0.058𝑥 +  0.8516 0.809 

C4 (novice) 𝑦 =  0.0017x +  0.796 0.583 

Table 5.7: Linear equation of trend line for each reviewer class in product categories belonging to prevention 

consumption goal. 

From Table 5.7, we observe that like Health and personal care, average helpfulness of 

conscientious cluster grows fastest in both Grocery and gourmet food and Baby product, 

followed by negative experts. In Table 5.7, we can observe from  𝑅2 error that trend line 

predicts least accurately for Baby novice reviewers (0.19) and most accurately for 

Grocery and gourmet food conscientious reviewers of (0.92). However on careful 

speculation we can see that  𝑅2 error for all clusters except Baby is greater than 0.64 

which is very good prediction. Details of our t-test results are presented in Table 5.8. 

Category Conscientious 

vs. Positive 

Expert 

Conscientious 

vs. Negative 

Expert 

Conscientious 

vs. Novice 

Positive 

vs. 

Negative 

 

Negative 

vs. Novice 

Positive 

Expert vs. 

Novice 

Grocery 

& 

gourmet 

food 

0.0005 1.7346E-05 0.0123 0.113 0.0102 0.0167 

 

 

Beauty 0.0034 0.4781 1.3352E-07 0.0721 0.0044 3.7337E-07 

Category 

 

Conscientious 

vs. Frequent 

positive 

expert 

Conscientious 

vs. Non- 

frequent 

negative 

expert 

Conscientious 

vs. Novice 

Frequent 

positive 

expert vs. 

Non- 

frequent 

negative 

expert 

Non- 

frequent 

negative 

expert vs. 

Novice 

Frequent 

positive 

expert vs. 

Novice 

Health & 

personal 

care 

0.0074 

 

 

0.3323 

 
8.6786E-07 

 

 

0.0268 

 

0.0003 

 

1.441E-07 

 

Pet 

supplies 
0.0035 0.0159 0.0005 0.0011 0.0176 2.7577E-05 

Baby 0.3448 0.1185 0.0337 0.0020 2.6023E-05 0.0022 

Table 5.8: t-Test result for change in helpfulness in clusters in product categories belonging to prevention 

consumption goal. Bolded values are statistically significant, p < 0.05. 

For products related with prevention consumption goal, we can make the following 

conclusions from Table 5.7 and t-test results in Table 5.8 which is true for all the product 

categories: 



www.manaraa.com

 102 

 Conscientious: Increase in average helpfulness of conscientious expert reviewers 

is always faster than novice (Grocery and gourmet food: 0.018 > 0.001; Health 

and personal care: 0.012 > 0.005; Baby: 0.012 > −0.010, Beauty: 0.058 >

0.001, Pet supplies: 0.013 > 0.009, Table 5.7). 

 Non-frequent negative expert: Increase in average helpfulness of non-frequent 

negative expert reviewers is also always faster than novice (Grocery and gourmet 

food: 0.013 > 0.001; Health and personal care: 0.015 > 0.005; Baby: −0.007 >

−0.010, Beauty: 0.020 > 0.001, Pet supplies: 0.0097 > 0.0091, Table 5.7).  

 Frequent positive expert: Increase in average helpfulness of frequent positive 

expert reviewers is again also always faster than novice (Grocery and gourmet 

food: 0.010 > 0.001; Health and personal care: 0.008 > 0.005; Baby: −0.008 >

−0.010; Beauty: 0.012 > 0.001; Pet supplies: 0.0098 > 0.0091, Table 5.7).  

Some other product-specific observations that we can make from Table 5.7 and t-test 

results in Table 5.8 are: 

 Conscientious: For Health and personal care, increase in average helpfulness of 

conscientious is similar to non-frequent negative expert (0.012 ≅ 0.015, Table 

5.7); and at a faster rate than frequent positive experts (0.012 > 0.008, Table 

5.7). For Baby, increase in average helpfulness of conscientious is similar to both 

non-frequent negative expert (0.012 ≅ −0.007, Table 5.7) and frequent positive 

experts (0.012 ≅ −0.008, Table 5.7). However for Grocery and gourmet food, 

increase in average helpfulness of conscientious is faster than both negative 

expert (0.018 > 0.013, Table 5.7) and positive expert (0.018 > 0.010, Table 

5.7). For Beauty products, increase in average helpfulness of conscientious is 
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similar to negative expert (0.058 ≅ 0.0206, Table 5.7) and faster than positive 

experts (0.058 > 0.0127, Table 5.7). For Pet supplies, increase in average 

helpfulness of conscientious is faster than both non-frequent negative expert 

(0.013 > 0.0097, Table 5.7) and frequent positive experts (0.012 > 0.0098, 

Table 5.7).  

 Non-frequent negative expert: For Health and personal care, and Baby, increase in 

average helpfulness of non-frequent negative expert reviewers is always faster 

than positive frequent experts (Health and personal care: 0.015 > 0.008; Baby: 

−0.007 > −0.008, Table 5.7). For Grocery and gourmet food, and Beauty 

products, increase in average helpfulness of negative expert reviewers is similar 

to the positive expert reviewers (Grocery and gourmet food: 0.013 ≅ 0.010; 

Beauty: 0.020 ≅ 0.012, Table 5.7). For pet supplies, increase in average 

helpfulness of non-frequent negative expert reviewers is always slower than 

positive frequent experts (Pet supplies: 0.0097 < 0.0098, Table 5.7). Hence, 

average helpfulness of non-frequent negative expert reviewers may be faster than 

, similar to, or slower than positive frequent experts for products related to 

prevention consumption goal. 

From above observations, for products related to both promotion and prevention 

consumption goal we can make two important conclusions:  

Conclusion 5a: Average helpfulness of the conscientious and expert clusters 

(including both the frequent positive and non-frequent negative) grow faster 

than that of the novice cluster.  
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Conclusion 5b: Average helpfulness of the conscientious cluster increases 

faster than or similar to that of the expert cluster.  

Also, expert clusters (i.e., frequent positive experts and non-frequent negative experts) 

may grow at either similar rate or faster than each other. Since experts clusters in 

products related with prevention consumption goal follow different trends, we cannot 

claim a strong relation on how frequent positive experts and non-frequent negative 

experts grow relative to each another. The relationship between positive experts and 

negative experts are category-specific for prevention consumption goal-related products.  

Note that for Baby products, average helpfulness of all classes of reviewers 

except conscientious cluster decrease over time. This is unique to Baby products and it 

indicates that reviewers are posting worse reviews with time. One possible explanation 

could be due to a very low reviewer count in Baby (6033, Table 4.21 in Chapter 4) when 

compared with other prevention consumption goal related products (e.g., Health and 

personal care = 70669, Table 4.15 in Chapter 4; Grocery and gourmet food = 34711, 

Table 4.17 in Chapter 4; Beauty = 42785, Table 4.23 in Chapter 4; Pet supplies = 29716, 

Table 4.25 in Chapter 4). Further investigations are needed to find factors that could have 

caused the decrease of review quality (i.e., average helpfulness) overtime in Baby 

products. With this in mind, for future reference, we should be cautious to perform 

experiment on only product categories with high unique reviewer count. Also, from Table 

5.7 we can see that  𝑅2 error for reviewer clusters except conscientious, in Baby are 

comparatively small (less than 0.42) with respect to all other clusters from product 

categories related to both promotion and prevention consumption goal. Hence these trend 

lines are the least accurate compared to the other trend lines that we have obtained for all 
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the other products. For these reasons, we will exclude observations of insights of the 

Baby products from our framework.  

5.1.3 Result 

With time, users consume more products and their tastes change or in other words they 

become experienced (McAuley, 2013). This is true for all the classes of reviewers.  

Irrespective of product types, we have observed that reviewers evolve with time. 

Conscientious reviewers, as the name implies, are known for their diligence for 

reviewing. As stated by conclusion 5b, the growth rate of conscientious in some product 

categories such as Books, Grocery and gourmet food, and Pet supplies is the highest 

compared to all other clusters. However in other categories, the growth rate of 

conscientious is similar to that of experts. For conscientious reviewers, their interest and 

diligence could reason for their quicker learning ability to write helpful reviews 

compared to other classes.  

From conclusions 5a and 5b, we know how each classes of reviewers evolve, and 

at what rate do they evolve relative to one another. We can use this information to learn 

which action sequence in terms of review features and reviewing frequency leads to what 

kind of evolution. For example, a cluster who posts review more frequently or more 

elaborately (or lengthily) may grow faster than the others. We can then recommend the 

actions of the cluster which grows quickly to the cluster which grows slowly. For 

example, the actions of experts can be recommended to conscientious and the actions of 

conscientious can be recommended to novices. Based on the findings of user evolution, 

we propose a recommendation framework in detail in Section 5.3.  
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 There are other factors that affect the evolution. For example, the evolution in 

terms of ratings behavior of a reviewer may be the results of number of factors such as 

shifting trends in community, arrival of new products, and even change in the users’ 

social network (McAuley, 2013). Another explanation could be related to linguistic 

difference in review text between different classes of reviewers—novice, expert and 

conscientious. There is a strong relation with “expertise” from the light of linguistic 

development (Romaine, 1984). We have to consider the effect of language used by 

different classes of reviewers. Do experts use more pronouns than novice? Are 

conscientious reviews more personal by using “I” instead of “We”? Do conscientious 

reviewers have positive tone than expert reviewers? To answer these questions and 

further understand how the tone preference changes in each cluster for different product 

types, we perform sentiment analysis in review text.  

5.2 Sentiment analysis 

We know that reviews present reviewers’ opinion based on the experience with the 

consumed product. The opinions may be positive, negative or neutral. Sentiment Analysis 

labels people's opinions as different categories such as positive and negative from a given 

piece of text (Madhoushi et al., 2015). 

Our objective in this experiment is Objective 5: Demonstrate that expert, novice, 

and conscientious reviewers use different tones while reviewing by performing sentiment 

analysis on review text. The sentiment analysis of review texts would present insights on 

which tone is used by experts in certain product type. Novice reviewers can be 

recommended to use the same tones as the experts to make their reviews more helpful.    



www.manaraa.com

 107 

5.2.1 Setup 

We use VADER to find the polarity and intensity of all product reviews. As covered in 

Chapter 2, sentiment polarity may be positive, negative, or neutral and intensity may 

range from -4 to +4. For each reviewer, the average of the intensities in each polarity is 

computed for all the reviews posted by the reviewer. Therefore, for each reviewer their 

opinions are measured in an average positive intensity, average negative intensity, 

average neutral intensity, average compound intensity. We then aggregate the sentiment 

of all reviewers in each class to compute the class average sentiment.  Then the next step 

is to look into the relation between review polarity and other features such as review 

length, average helpfulness, and average overall to understand their interdependencies, if 

any. 

5.2.2 Discussion 

For each class of reviewers, we calculate correlation between review features such as 

average review length, average helpfulness, and average overall with review sentiments 

measured by average positive intensity, average negative intensity, average neutral 

intensity, and average compound intensity. Below are some of the observations: 

 Average helpfulness and review sentiment: There is a very low correlation of  

average helpfulness with (1) positive tone (-0.096), (2) negative tone (0.031),  and 

(3) neutral tone (0.08). The product-specific details are in Appendix, Section F. 

This suggests that there is no significant relation between review sentiment and 

average helpfulness.  

 Average overall and review sentiment: There is a high correlation between 

average overall and review sentiment. Specifically, the correlation between 
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average overall with (1) positive tone is 0.297 and (2) negative tone is -0.282. The 

product-specific correlation details are in Appendix, Section F. This signifies that 

a satisfied consumer (i.e., high average overall) shares more positive experiences 

(i.e., high positive tone) with the product in their reviews. Conversely, a 

dissatisfied consumer provides low rating to products (i.e., high average overall) 

and has more negative tone in their reviews. Hence this is a verification that a 

satisfied consumer who provides high overall has more positive information in 

their reviews which is reflected by the positive tone.  

 Review length and review sentiment: The correlation between review length and 

review sentiment is more pronounced and we can make number of observations 

from this relation. Below Table 5.9 displays the correlation between review length 

and positive, negative, and neutral tone within each classes of reviewers. 

  Review length 

Product 

Category Clusters Positive Negative Neutral 

Books C1 (conscientious) -0.282 0.204 0.159 

C2 (expert) -0.375 0.308 0.234 

C3 (novice) -0.325 0.285 0.205 

Cell Phones 

& 

accessories 

C1 (conscientious) -0.351 0.080 0.343 

C2 (expert) -0.249 0.008 0.257 

Electronics C1 (novice) -0.128 -0.013 0.125 

C2 (expert) -0.256 0.099 0.214 

C3 (conscientious) -0.288 0.104 0.251 

Office 

product 

C1 (expert) -0.302 0.096 0.263 

C2 (novice) -0.065 -0.046 0.091 

C3 (conscientious) -0.269 0.087 0.241 

Grocery & 

gourmet 

food 

C1 (conscientious) -0.307 0.144 0.262 

C2 (novice) -0.207 -0.059 0.237 

C3 (positive expert) -0.346 0.120 0.307 

C4 (negative expert) -0.179 -0.036 0.194 

Health & 

Personal 

care 

C1 (frequent positive expert) -0.256 0.104 0.205 

C2 (non frequent negative expert) -0.129 -0.021 0.134 

C3 (conscientious) -0.270 0.132 0.212 

C4 (novice) -0.141 0.008 0.129 

Baby C1 (novice) -0.200 -0.026 0.211 

C2 (frequent positive expert) -0.363 0.110 0.334 

C3 (conscientious) -0.333 0.098 0.317 
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C4 (non frequent negative expert) -0.228 0.082 0.203 

Beauty C1 (positive expert) -0.284 -0.070 0.253 

C2 (negative expert) -0.149 -0.092 0.187 

C3 (conscientious) -0.288 -0.093 0.272 

C4 (novice) -0.169 -0.098 0.213 

Pet supplies C1 (frequent positive expert) -0.285 -0.092 0.243 

C2 (non-frequent negative expert) -0.121 -0.095 0.162 

C3 (conscientious) -0.305 -0.097 0.277 

C4 (novice) -0.194 -0.097 0.209 

Table 5.9: Correlation between review length and positive, negative, and neutral tone for each cluster. 

From Table 5.9 we see that for all clusters in all product categories, correlation of review 

length with positive tone is higher than neutral tone which in turn is higher than negative 

tone. We can make following observations from Table 5.9: 

 Review length is negatively correlated with positive tone, we can say that longer 

reviews are less positive, in other words, shorter reviews are more positive. 

 Review length is positively correlated with neutral tone, we can say that longer 

reviews are more neutral. 

5.2.3 Result 

The observations we made about the longer reviews being less positive reveals a unique 

feature of online reviewing process. Usually merchants trying to sell products tend to 

convey the positive effects of the product. They choose positive adjectives for their 

online advertising. Hence there is a lot of positive information already in the online 

advertisement and reviewers do not want to re-iterate the same in their reviews. Rather 

they would just validate the positive effects of the product as claimed by the 

advertisement. Hence positive reviews are more likely to be straight and succinct. Hence 

shorter reviews are more positive. Conversely, if a reviewer wants to share negative 

experience with the product, they have to explain and elaborate their experience as they 

are pointing the negative product features that are not shared in the product’s 

advertisement. Therefore, longer reviews are less positive. 
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Sentiment analysis provided some insights on the relation between review tone 

and review features like average helpfulness, average overall, and review length. High 

correlation of review overall with review sentiment proves that, the tone for all reviewer 

cluster is solely dependent on the reviewers’ experience with the product. Also, the 

reviewing tone is not different for different class of reviewers. Hence we can conclude 

that review tone does not have a direct relation with reviewer expertise level.  

In this experiment, the tone of each reviewer class such as positive , negative, and 

neutral is calculated by averaging the tone of all the reviews posted by the reviewers in 

the class. As a future work, we may want to look at the temporal distribution of review 

tone for each reviewer class to find if different classes of reviewers use different tone 

overtime. In other words, we may investigate if there is any change in tone overtime for 

each reviewer class which may lead to their evolution in terms of review quality (covered 

in Section 5.2). This might provide insights on the relation between reviewer expertise 

and review sentiment overtime.   

5.3 Recommendation System framework 

In this section, we propose a recommendation system framework that provides 

recommendations in order to help reviewers to improve their reviewing skills and write 

better quality reviews. The framework works by recommending reviews posted by 

experts in the past to the reviewer with lesser reviewing expertise.  
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Figure 5.3: Components of Recommendation System framework 

Figure 5.3 is the system diagram of recommendation system that we propose. It operates 

in two modes: (1) offline training mode and (2) online operation mode. It uses multiple 

databases:(1) a review database, (2) a reviewer database, and (3) a product database. 

These three databases: review, reviewer, and product databases contain raw data, whereas 

the ones indicated with a ‘+’ sign are updated database with added derived data.  For 

example, the reviewer+ database contains the original reviewer database plus their class 

label obtained from reviewer clustering (see Section 4.3 in Chapter 4).  In addition, the 

review+ database contains the original review database plus the usage history of the 

reviews that have been recommended in the past such as their recommendation counts. 

Depending on whether the recommended review helped in increasing the helpfulness of 

reviews they can be differentiated into two types: (1) reviews that have a record of being 

helpful in the past, referred to successful recommendations, and (2) reviews that have a 

record of not being helpful in the past, referred to unsuccessful recommendations.  Thus, 
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the review+ database tags the reviews as successful recommendations for future use and 

unsuccessful recommendations that discouraged from future use. 

As shown in Figure 5.3, the recommendation system framework is divided into 

two modes: offline training and online operation. 

As implied by the name, the training mode occurs offline. In training mode, there 

are two key components: 

1. Profiler: This contains reviewer profiler and product profiler. Reviewer profiler 

extracts feature related to a reviewer such as a total number of reviews posted, 

total active month, average helpfulness and so on (see Section 4.3.1 in Chapter 4). 

Product profiler segregates products into promotion and prevention consumption 

types. 

2. Machine Learning Module: This contains clustering of reviewers followed by 

classification (see Section 4.4 in Chapter 4). The output of this component is a 

database, referred to as the reviewer+ database that contains details of reviewers 

along with their labels based on the quality of their reviews. 

 As implied by the name, the operation mode occurs online in real time. In 

operation mode there are also two key components: 

1. Recommendation Engine: This component contains a recommendation generator 

that uses the reviewer+ database to classify a reviewer for whom 

recommendations are to be generated into one of the classes. For product 

classification, it uses the product database. Then it computes evolution (average 

helpfulness vs. active year) of the reviewer and all experts by using the review 

database. Based on the evolution of the reviewer, it finds the closest experts for 
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the reviewer. It extracts the reviews posted by the closest experts and then uses 

product specific feature properties to choose reviews for recommendations. This 

is covered in detail in Section 5.3.1.1.   

2. Feedback Filter: This component contains a review template generator. This 

review template generator keeps track of successful recommendations 

(recommended reviews which were implemented by reviewers and successfully 

increased the helpfulness). Additionally, it also flags the recommended reviews, 

which didn’t increase the average helpfulness. At the end of this phase, the 

review+ database is created which has a list of successful recommendations as 

templates that were helpful and will be used in future. The review template 

database also contains the list of unsuccessful recommendations that are flagged 

from future use because they were not helpful in the past. This is covered in detail 

in Section 5.3.1.2. 

5.3.1 Online operation mode 
In the online operation mode, the first step is to generate recommendation followed by 

feedback process as indicated in Figure 5.3. Recommendation engine generates 

recommendations for a reviewer. The process starts by classifying the reviewer into his or 

her corresponding class; for example, a reviewer could be an expert, or conscientious, or 

a novice. Once the class of the reviewer is known, the next step is to find a group of 

closest experts to this reviewer to extract the reviews posted by them in the past. We 

then classify the product to be reviewed into either the prevention or promotion goal type 

and use this information to further extract appropriate reviews from this group of 

expert reviewers’ reviews. For example, if the product is related to the promotion 
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consumption goal, then we extract reviews with high overall (rating) as 

recommendations. This is based on our findings (see Table 4.32 in Chapter 4) that 

reviews with high overall (rating) have a higher probability of being helpful. The flow 

chart below illustrates the process of generating recommendations in detail.  

Feedback filter generated feedback based on the usage of recommended reviews. 

Once the recommendations are generated and used by reviewers, the success of the 

recommendations is measured and is stored for future reference. The recommended 

reviews that increased the number of up-votes or helpfulness are tagged as successful 

recommendations whereas those recommendations that did not increase the helpfulness 

of the review are deemed as unsuccessful recommendations. The feedback process tracks 

both successful and unsuccessful recommendations and stores successful 

recommendations as templates in the review+ database—i.e., the original review database 

plus the usage history—for future recommendations. The feedback process is a filtering 

mechanism in which successful recommendations are re-used and unsuccessful 

recommendations are flagged from future use.  
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Figure 5.4: Flowchart of recommendation engine and feedback process 

In Figure 5.4, we can see that there are multiple processes and decisions that are made in 

order to generate recommendations (covered in Section 5.3.1.1) followed by the feedback 

process (covered in Section 5.3.1.2).  

5.3.1.1 Recommendation generation 
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Recommendation generation is the process of generating suitable recommendations for a 

given reviewer from the list of past reviews posted by experts. Based on the flowchart 

presented in Figure 5.4, below is the algorithm to generate recommendations for a 

reviewer r to review product p: 

Algorithm RecommendationsGeneration (r, p) 

Inputs: Reviewer r; Product p 

Database used: Reviewer+ database 

  Review+ database 

  Product database 

Returns: List of reviews to be recommended to r 

 

1.  appropriateReviewList  [] 

2.  If Classify(r) does not return “expert” then // either conscientious or novice 

3.      closestExpertList  FindClosestExpert (r, k)  // find k closest experts 

4.      appropriateReviewList  ExtractAppropriateReviews (r, p, closestExpertList))        

                                                                       // appropriate reviews based on p  

                                                                           // and past reviews of closestExpertList 

5.  Endif 

6.  Return appropriateReviewList 

End Algorithm 

 

The first step is to classify reviewer r into one of the classes—expert, conscientious or 

novice. The process of classification is covered in detail in Section 4.4 of Chapter 4. The 

reviewer+ database contains the class label of each reviewer along with other information 

about the reviewer. Classify(r) returns the class label from the reviewer+ database. The 

process of recommendation generation is carried out only if the reviewer r is not an 

expert. There are two main function calls FindClosestExperts() and 

ExtractAppropriateReviews() that correspond to two modules, respectively: ((1) 

Finding closest experts for a reviewer, and (2) Extracting appropriate reviews. 

 Finding closest experts for a reviewer is the first step, which mainly focuses on 

searching the experts closest to the reviewer for who recommendations are being 
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generated. The closeness of a reviewer with experts can be measured using a distance 

metric. We will cover the details of finding a reviewer’s closest experts in Section 

5.3.1.1.1. The Second step is to extract appropriate reviews from the list of past reviews 

posted by the group of closest experts based on product type. This step mainly involves 

utilizing the findings we made about the relation of helpfulness with review features such 

as review length or review overall (ratings) based on product type. We will discuss 

extraction of appropriate reviews in detail in Section 5.3.1.1.2.  

5.3.1.1.1 Find closest experts 

Traditionally, in recommendation systems, memory-based methods have been used to 

compute similarities between users, referred to as user-based collaborative filtering 

(Sarwar et al., 2001). Basically, memory-based algorithms are heuristics that make rating 

predictions based on the entire collection of previously rated items by the users to 

recommend the most suitable items (Adomavicius and Tuzhilin, 2005). The similarity 

between two users is computed based on their ratings of common items. User-user 

similarity ranges from 1 if they are totally similar, and -1 if they are completely 

dissimilar. Based on the rating of the most similar users, it predicts the rating the current 

user would give to every item he or she has not rated yet. Then the recommendation 

system suggests the item with the highest rating to the user (Massa et al., 2004). Since 

our framework aims at improving the reviewing skill of reviewers, we focus on finding 

reviewer-reviewer similarity, instead, based on the reviewers’ evolution-trend.  

Recall that, from Section 5.1, we have established that reviewers evolve over time 

by improving their reviewing skill. However, the rate of improvement may differ from 
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one reviewer to another. Reviewer similarity is calculated based on the similarity 

between their evolution rates. 

Also recall that, from Chapter 4, we know that, in each product categories, there 

are reviewers who have expertise in writing a good quality review, identified as expert 

reviewers. The recommendation framework helps a given reviewer r to improve their 

reviewing skill by recommending reviews from k closest experts. To improve the 

reviewing skill of reviewers with lesser reviewing expertise, we calculate conscientious- 

expert similarity or novice- expert similarity to compute their closeness. The closeness of 

a reviewer with experts is measured in terms of the closeness of their review quality over 

time with one another. We use the Euclidean distance between the slopes of average 

helpfulness of the given reviewer r and experts on a yearly basis. The k experts with the 

least distances with the reviewer r are labeled as k closest expert of, where k is a user-

defined value, which denotes the number of closest experts. For example, Table 5.10 

contains the average helpfulness of a random conscientious reviewer and its 3 closest 

experts (i.e., k = 3), along with their respective Euclidean distance denoted by d with the 

conscientious reviewer in Books category for 5 active years. 

 Average Helpfulness 

Year count 

Conscientious 

Reviewer 

d = 0.000 

Expert 1 

d = 0.013 

Expert 2 

d = 0.016 

Expert 3 

d = 0.017 

1 0.833 0.857 1 0 

2 0 0 0 0.667 

3 0.667 0.667 0.667 0.921 

4 0.916 0.95 0.875 0.925 

5 1 1 1 0.928 

Table 5.10: Average helpfulness of a random conscientious reviewer and three closest experts in “Books” 

category. 

In Table 5.10, the average helpfulness of the conscientious reviewer decreases 

from Year 1 to Year 2 and then increases gradually from then to Year 5. The three closest 
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experts to this reviewer also have the similar change in their average helpfulness over a 

period of five years. Since the evolutionary trend of the closest experts is similar to that 

of the reviewer, our recommendation system suggests the reviews posted by the closest 

experts. In other words, if a reviewer evolves her review quality in a similar trend as her 

closest experts for active year t then the reviews posted by the closest experts in the 

active year t+1 can be recommended to the reviewer in the same year t+1. For a review 

to become recommendable, its helpfulness must be greater than the average helpfulness at 

time t of the reviewer. If the review’s helpfulness is less than the average helpfulness of 

the reviewer, then the review is non-recommendable. 

In Table 5.11 there are 7 random conscientious reviewers, their average helpfulness and 

the helpfulness of three different reviews found for each reviewer. These reviews were 

posted by three different closest experts in the order of increasing distance denoted by d 

(Review 1 is posted by the expert with the shortest distance and Review 3 is posted by 

the expert with the longest distance). 

 Average Helpfulness 

Conscientious 

Reviewer id 

Conscientious 

Reviewer 

Review 1 

 

Review 2 

 

Review 3 

 

Reviewer 1 
0 

0.75 

(d = 0.001) 

0.571 

(d = 0.004) 

0.6 

(d = 0.005) 

Reviewer 2 
0.861 

0.875 

(d = 0.005) 

0.875 

(d = 0.007) 
0.8 

(d = 0.010) 

Reviewer 3 
1 

1 

(d = 0.006) 

1 

(d = 0.006) 

1 

(d = 0.007) 

Reviewer 4 
0.682 

1 

(d = 0.006) 

0.768 

(d = 0.011) 

0.889 

(d = 0.017) 

Reviewer 5 
0.716 

0.871 

(d = 0.046) 

0.889 

(d = 0.0053) 
0.633 

(d = 0.068) 

Reviewer 6 
0.25 

0.333 

(d = 0.006) 

1 

(d = 0.007) 

0.75 

(d = 0.007) 

Reviewer 7 
1 

1 

(d = 0.005) 

1 

(d = 0.007) 
0.928 

(d = 0.010) 

Table 5.11: Average helpfulness of 7 random conscientious reviewers and helpfulness of three reviews posted by 

three closest experts in “Books” category. Bolded values indicate non-recommendable reviews. 
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In Figure 5.11, we see that it is possible for the helpfulness of some reviews (bolded) 

posted by closest experts to be less than the average helpfulness of the reviewer as the 

distance d increases. However, most of the reviews (non-bolded) posted by closest 

experts have helpfulness greater than the average helpfulness of the reviewer. As 

observed in Table 5.11, the generated reviews may be non-recommendable as distance 

increases. Therefore, we check the sensitivity of k for each product category to determine 

the appropriate values of k such that the reviews generated by the closest experts are 

likely to be recommendable. The detail on setting the value of k is covered in Section 

5.3.1.1.1.1.  

The algorithm to find k closest experts for a reviewer r is below. The algorithm 

uses the data structure of reviewer whose definition is covered in Appendix, Section G. 

Algorithm FindClosestExperts(r, k) 

Inputs: Reviewer r; Integer k 

Database used: Reviewer+ database 

  Review database 

Returns: List of k closest expert reviewers to r 

 

1.  closestExpertList  [] 

2.  r.avgHelpfulnessList  list of average helpfulness of r in each active year  

3.  For each expert e  

4.  e.avgHelpfulnessList  list of average helpfulness of e in each active year 

5.  d  CalculateEuclideanDist (r, e)                 //Euclidean distance 

5. add d  to expertDistanceList 

6.  Endfor 

7.  sort expertDistanceList in ascending order 

8.  closestExpertList  experts corresponding to top k distances in expertDistanceList                                         

          // closest experts have shortest distance 

9.  r. prevAvgHelpfulness  r. avgHelpfulness   // capture the avg helpfulness of r before    

                                                                       // recommending  

10. Return closestExpertList 

End Algorithm 

 

The algorithm to find k closest experts calls CalculateEuclideanDist(r, e) function that 

calculates Euclidean distance between reviewer r and an expert e. The Euclidean distance 
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is one of the most common distances that have been used for numerical data (Gan et al., 

2007). We used this distance to measure the distance between the average helpfulness 

between any two reviewers 𝑟𝑖 and 𝑟𝑗. For a reviewer 𝑟𝑖, 𝑟𝑖.avgHelpfulnessList  = (𝑟𝑖,1, 𝑟𝑖,2, 

…, 𝑟𝑖,𝑛), and for another reviewer 𝑟𝑗, 𝑟𝑗.avgHelpfulnessList = (𝑟𝑗,1, 𝑟𝑗,2,…, 𝑟𝑗,𝑛), Euclidean 

distance between 𝑟𝑖 and 𝑟𝑗  is defined as, 

𝑑(𝑟𝑖 , 𝑟𝑗) = √∑|𝑟𝑖,𝑘 − 𝑟𝑗,𝑘|
2

𝑛

𝑘=1

2

 

where n is the number of active year of the reviewer 𝑟𝑖 and 𝑟𝑖,𝑘, 𝑟𝑗,𝑘 are the values of 

average helpfulness for the kth active year of the reviewer 𝑟𝑖 and 𝑟𝑗 respectively.  

5.3.1.1.1.1 Value of k 

Our aim is to generate recommendable reviews i.e., reviews whose helpfulness is greater 

than the average helpfulness of the reviewer for whom recommendations are generated. 

As seen in Table 5.11 reviews tend to be non-recommendable as the distance between 

their author and the reviewer increases. We calculate the percentage of non-

recommendable reviews with the increasing value of k in order determine the value of k 

where the non-recommendable reviews saturate. Figure 5.5 plots the percentage of non-

recommendable reviews for different value of k ranging from 1 to 30 for products related 

with prevention consumption goal. 
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Figure 5.5: Percentage of non-recommendable reviews with respect to k for products related with prevention 

consumption goal. 

In Figure 5.5, we see that the percentage of non-recommendable reviews among all the 

reviews found from the closest experts increases until a certain value of k after which it 

converges. For example, in Pet supplies the percentage of non-recommendable reviews 

increases until it converges at around 12% when the value of k reaches around 10. Figure 

5.6 plots the percentage of non-recommendable reviews for different value of k ranging 

from 1 to 30 for products related with promotion consumption goal. 
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Figure 5.6: Percentage of non-recommendable reviews with respect to k for products related with promotion 

consumption goal. 

In Figure 5.6, similar to Figure 5.5, the percentage of non-recommendable reviews 

increases until a certain value of k after which it converges. For example, in Books and 

Electronics, the percentages slowly increase until they converge at 23% and 13%, 

respectively when k reaches around 20. To summarize Figures 5.5 and 5.6, the 

percentages of non-recommendable reviews and range of k at convergence point are 

listed in Table 5.12 for all product categories.  

Category Range of k at 

convergence point 
% Non-

recommendable 
reviews at convergence 

Books 19-21 23 

Electronics 19-21 13 

Cell Phones and accessories 9-11 13 

Office product 7-9 12 

Grocery and gourmet food 9-11 16 

Health and personal care 7-9 16 

Beauty 7-9 16 

Pet supplies 9-11 12 

Table 5.12: Range of k where percentage of non-recommendable reviews converges 
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In Table 5.12, for all product categories except Books and Electronics, the convergence 

occurs when k ranges from 7 to 11. So for our framework, an appropriate value of k 

would range from 7 to 11. However, for Books and Electronics, the convergence occurs 

late when k has reached around 19- 21. Note from Table 4.1 in Chapter 4, the product 

count for Books (~1 million) and Electronics (~300k) is the highest and second highest 

compared to the other categories. These two product categories are very diverse and thus 

have more diverse reviews in each category. Subcategorization of products (and their 

reviews) may decrease the convergence point in these cases. For example, Books may be 

subcategorized into drama, science fiction, horror, mystery, romance, action, etc. and 

Electronics may be subcategorized as audio & video, camera & photo, car electronics, 

computer, etc. This needs further investigation and could be one of the interesting future 

works. 

5.3.1.1.2 Extract appropriate reviews 

We matched the evolution trend of a reviewer with experts for time t to find a group of 

closest experts. Our assumption is that a reviewer will reach the highest level of expertise 

by learning from the experiences of his or her closest experts. In order to provide 

assistance with intermediate steps for the reviewer to grow from his or her current state to 

the highest level of expertise, we want to recommend the positive actions—that are not 

too far out of reach of the reviewer—and discourage the negative actions—that are within 

reach of the reviewer—of the reviewer’s closest experts. The list of reviews posted by the 

closest experts at time t +1 can either increase or decrease their average helpfulness. Our 

recommendation system framework recommends the reviews in ‘recommendable list’ that 

will likely improve the average helpfulness along with the reviews in ‘non-



www.manaraa.com

 125 

recommendable list’ that will likely decrease the average helpfulness of the reviewer for 

who the recommendations are generated. Therefore, we segregate the list of reviews 

posted by closest experts into recommendable and non-recommendable reviews. 

Recommendable reviews are the reviews whose helpfulness is greater than the average 

helpfulness of the reviewer for whom the recommendations are generated. Non-

recommendable reviews are the reviews whose helpfulness is less than the average 

helpfulness of the reviewer for whom the recommendations are generated. We know 

from Figures 9 and 10 that percentage of non-recommendable reviews is very less 

(usually <16%) compared to recommendable reviews for most product categories. If the 

reviewer uses any of the recommendable reviews to write her new review, our premise is 

that we expect, as a result, that the helpfulness of the new review will be proportional to 

the recommended review. Hence the newly posted review is likely to increase the average 

helpfulness of the reviewer. The non-recommendable reviews, also posted by the closest 

experts at time t+1, can be used to warn the reviewer on how not to write reviews. This 

could be very useful to the reviewer, as it would help them to avoid the reviews they 

would have posted otherwise and not repeat the same mistakes their closest experts made.  

Once the list of recommendable reviews is created, these reviews are prioritized 

based on the conclusions on product category we derived in Table 4.34 in Chapter 4. To 

restate what was mentioned in Chapter 4, how a review is helpful is based on the type of 

product reviewed and the associated review length and overall/ratings.    

 Higher overall leads to helpful reviews for products associated with promotion 

consumption goal such as Books, Electronics, Cell Phones and accessories, and 

Office product. 
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 Longer review leads to helpful reviews for products associated with prevention 

consumption goals such as Grocery and gourmet food, Health and personal care, 

Baby, Beauty, and Pet supplies. 

Based on the above findings, the past reviews of experts are prioritized before 

recommending to the reviewer. For reviews related to promotion consumption goal 

products, reviews with high overall/rating are prioritized over lower ones. For reviews 

related to prevention consumption goal products, longer reviews are prioritized over 

shorter reviews. Figure 5.7 shows the flowchart of the extraction process. 
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Figure 5.7: Flow chart to extract appropriate reviews  

The algorithm to extract appropriate reviews is below. The algorithm uses the data 

structure of review and reviewer whose definitions are covered in Appendix, Section G. 

Algorithm ExtractAppropriateReviews (r, p, closestExpertList) 

Inputs: Reviewer r; Product p; List of closest experts closestExpertList 

Database used: Product database 

  Review+ database 

Returns: List of reviews to be recommended and avoided 

 

1.  recommendableList  [] 

2.  nonRecommendableList  [] 

3.  For each expert e in closestExpertList 

4.   add reviews posted by e to recommendableList 

5.  Endfor 

6.  For each review rev in recommendableList 

8.   If rev.helpfulness < r. prevAvgHelpfulness then     // non-recommendable reviews 

9.          move rev from recommendableList to nonRecommendableList 

10.       Endif 

11.  Endfor 

12.  If p.type is “prevention consumption goal” then 

13.  sort recommendableList in descending order of their review length 

14.  Else                                                              // p.type is “promotion consumption goal” 

15.  sort recommendableList in descending order of their overall/ rating 

16.  Endif 

17.  Return recommendableList, nonRecommendableList 

End Algorithm 

 

In the above algorithm product category is used to prioritize the recommendable reviews 

of closest experts. In the end of this phase, lists of recommendable and non-

recommendable reviews are generated. Additionally, there are multiple other ways to 

prioritize recommendable reviews for recommendation, which can be integrated in the 

above algorithm. Below are some of the methods: 

1. Use history of the reviews to prioritize recommendable reviews. The history of a 

review can provide information on how it was received, if it was recommended in 

the past. If the review was recommended in the past and was successful then it is 

likely to be successful again. Hence the review will have higher priority. There 
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could be multiple scenarios such as— reviews with no history of past 

recommendation, reviews with the history of successful recommendation, and 

reviews with the history of unsuccessful recommendation. To restate what was 

mentioned in Section 5.3, the recommended reviews that increased the average 

helpfulness of reviewer (for whom recommendations were generated) are referred 

as successful recommendations whereas those recommendations that did not 

increase the average helpfulness of reviewer (for whom recommendations were 

generated) are referred as unsuccessful recommendations. If a review has the 

history of past recommendation then its usage history such as score and 

recommendation count is used to calculate its rank that denotes its success rate till 

date (covered in detail in Section 5.3.1.2). The score of a review denotes the 

number of times the review has been successful and unsuccessful. The score is 

computed by adding 1 for each successful recommendation and subtracting 1 for 

each unsuccessful recommendation. Additionally, the number of times the review 

has been recommended in the past is stored as recommendation count. Rank 

denotes the success rate of a review and is calculated by dividing the score of the 

review with the recommendation count of the review. A review with high rank 

denotes high success rate. The code snippet to compute rank of a review is below: 

1. For each review rev in recommendationList 

2. rev.rank  rev.score / rev.recommendationCount 

                 // successful reviews have higher rank 

3.  Endfor 

Once the rank of all reviews is calculated, the reviews are prioritized based on the 

distance between reviewer and expert (reviews’ author), and their rank. The 

equation to calculate the priority of each review is below: 
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𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑟𝑒𝑣 =  
1 + 𝑟𝑎𝑛𝑘𝑟𝑒𝑣

𝑑(𝑟, 𝑟𝑒𝑣. 𝑎𝑢𝑡ℎ𝑜𝑟)
 

where 𝑑 > 0 and −1 ≥ 𝑟𝑎𝑛𝑘 ≥ 1. d is the distance between reviewer r (for 

whom recommendations are generated) and author of the review; and rank is the 

success rate of the review rev. The priority of a review is inversely proportional to 

the distance between the review’s author and the reviewer (for whom 

recommendations are generated) because from Section 5.3.1.1.1.1 we know that 

the percentage of non-recommendable reviews increases as distance increases. In 

other words, the reviews posted by the expert with shorter distance will have 

higher priority than the reviews posted by the expert with longer distance. Also, 

the priority of a review is directly proportional to its success rate or rank.  

2. Use history of expert reviewers to prioritize recommendable reviews. The history 

of an expert reviewer can provide information on how his or her reviews were 

received, if they were recommended in the past. If the reviews written by the 

expert were recommended in the past and were successful then it is likely that the 

reviews posted by the expert will be successful. Hence reviews posted by the 

expert will have higher priority. Similar to reviews, there could be multiple 

scenarios with reviewers such as— reviewers with no history of past 

recommendation, reviewers with the history of successful recommendation, and 

reviewers with the history of unsuccessful recommendation. The rank of the 

reviewers is calculated in a similar manner as the reviews. Rank of a reviewer 

denotes the success rate of the reviewer (covered in Section 5.3.1.2). In short, a 

reviewer whose reviews have a high success rate of recommendation has a high 

rank. The code snippet to calculate the rank of all reviewers is below: 



www.manaraa.com

 131 

1.  For each review rev in recommendationList 

2. e  rev.author                             // expert reviewer e who posted review rev 

3. e.rank  e.score / e. recommendationCount 

                                                                           // successful reviewers have higher rank 

4.  Endfor 

Once the rank of all reviewers is calculated, the reviews can be prioritized based 

on the distance, and rank of the reviewer. The equation to calculate the priority of 

each review is below: 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑟𝑒𝑣 =  
𝑟𝑎𝑛𝑘𝑟𝑒𝑣.𝑎𝑢𝑡ℎ𝑜𝑟

𝑑(𝑟, 𝑟𝑒𝑣. 𝑎𝑢𝑡ℎ𝑜𝑟)
  

 

where 𝑑 > 0 and −1 ≥ 𝑟𝑎𝑛𝑘 ≥ 1. d is the distance; and rank is the success rate 

of the author. The reviews in recommendation list are sorted based on their 

priority value before being displayed to the reviewer. The priority of a review is 

directly proportional to its success rate or rank of the review author. In other 

words, if an author has a history of successful recommendations in the past then a 

review posted by the author is likely to be successful hence the review has a 

higher priority. 

3. Use history of reviews and reviewers to prioritize the recommendable reviews. 

This approach is a weighted combination of the above two approaches. We use 

the rank of review and its author to calculate the priority of each review as written 

below: 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑟𝑒𝑣 =
𝑤1 ∗  𝑟𝑎𝑛𝑘𝑟𝑒𝑣 + 𝑤2 ∗ 𝑟𝑎𝑛𝑘𝑟𝑒𝑣.𝑎𝑢𝑡ℎ𝑜𝑟

𝑑(𝑟, 𝑟𝑒𝑣. 𝑎𝑢𝑡ℎ𝑜𝑟)
 

𝑤1 + 𝑤2 = 1 

where d (𝑑 > 0) is the distance. The reviews in recommendation list are sorted 

based on their priority value before being displayed to the reviewer. 
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5.3.1.2 Feedback process 

The final component in recommendation system framework is feedback process. This 

provides feedback on both review and reviewer (author of the review) based on the usage 

of recommended reviews. The feedback process on any recommended review starts after 

a certain duration of time (say 10 weeks). This duration is the time when other customers 

read the posted review (recommended by our framework) and post their votes, which 

determines the helpfulness of the review. The feedback is used to record the usages of 

recommended reviews for future use. If a recommended review was used by a reviewer 

and successfully increased the average helpfulness of the reviewer, it is referred as a 

successful recommendation. If the recommended review fails to increase the average 

helpfulness of the reviewer then it is referred as an unsuccessful recommendation. At the 

end of this phase, the review+ database is updated to track review usage data such as 

score and recommendation count. The score denotes the number of times the review has 

been successful or unsuccessful. For each successful recommendation 1 is added whereas 

for each unsuccessful recommendation 1 is subtracted to compute the score of the 

recommended review. The number of times a review has been recommended in the past 

is stored in recommendation count.  

Additionally, feedback process also provides feedback on the expert reviewer 

who wrote the recommended review (author of the review). It updates reviewer+ 

database to store the score and recommendation count of the expert. Similar to a review, 

the score of an expert reviewer is calculated by adding 1 for his or her each successful 

recommendation and subtracting 1 for each unsuccessful recommendation. 
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Recommendation count of an expert reviewer denotes the number of times his or her 

review has been recommended. The algorithm of feedback process is below: 

Algorithm FeedbackProcess (rev, r) 

Inputs: Recommended review rev; Reviewer r 

Database used: Review+ database 

  Reviewer+ database 

Returns: status of rev  

 

1.  e  rev.author                         

2.  If rev.helpfulness <= r. previousAvgHelpfulness then              // unsuccessful review 

3.      status  unsuccessful 

4.      rev.score  rev.score -1 

5.      e.score  e.score -1 

6.  Else                                                                                      // successful review 

7.      status  successful 

8.     rev.score  rev.score +1 

9.     e.score  e.score +1 

10. Endif 

11.  rev.recommendationCount  rev.recommendationCount +1 

12.  e.recommendationCount  e.recommendationCount +1 

13.  Return status 

End Algorithm 

 

As stated earlier in Section 5.3.1.1.2, score and recommendation count measure the 

success rate of a review, denoted as rank. Reviews with higher rank get prioritized as 

templates for future use and reviews with lower rank get discouraged from future use. 

However, lower rank reviews may also be used to warn reviewers on how not to review a 

product. Similarly, for a reviewer rank denotes the success rate of the reviewer. A 

reviewer with a higher rank is more reliable as his or her reviews have the higher success 

rate. Similarly, the reviews posted by the expert reviewer with higher rank are 

encouraged over the reviews of the reviewer with lower rank. 

5.3.2 Mockup diagram 

In this section, we present mockup diagrams of the proposed recommendation software. 

This prototype implements review recommendation system framework focusing mainly 
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on recommendation presentations and user interactions with the recommended reviews. 

In this section, we use the mockup diagrams to showcase how we can present review 

recommendations and how reviewers may use recommendable reviews as well as non-

recommendable reviews. Figure 5.8 shows how a reviewer interacts with the software by 

reading through recommendable reviews (Figures 5.10 and 5.11) and non-

recommendable reviews (Figure 5.12). 

 
Figure 5.8: User interaction with the system making use of recommendable and non-recommendable reviews 

We will now discuss how Figures 5.9, 5.10, 5.11 and 5.12 look and how a user can make 

use of them. Figure 5.9 shows a user interface that recommends a list of reviews to a 

reviewer who is ready to write a review for an electronics product Samsung Galaxy Tab 
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4. There are five reviews in the right panel, which is scrollable and contains reviews from 

k closest experts. The reviewer may use any one of the recommended reviews to write his 

or her own review.  

 
Figure 5.9: : Interface displaying top 20 helpful reviews in the recommendable list in right panel 

In Figure 5.9, the right panel contains “Copy” button for each recommended review. The 

“Copy” button is clicked to copy the respective review into the review description box. 

Figure 5.10 shows the interface after the reviewer has clicked the first (topmost) “Copy” 

button. 
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Figure 5.10: User interface after the first copy button is clicked i.e., the first review in the recommendable list is 

copied to the review description textbox. 
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Copy button copies the recommended review headline and description into the 

description textbox and headline textbox respectively. Similarly, Figure 5.11 below is 

another example of the interface after the reviewer has clicked the fourth “Copy” button. 

 
Figure 5.11: User interface after the fourth copy button is clicked i.e., the fourth review in the recommendable 

list is copied to the review description textbox. 
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Once the recommended review has been copied, the reviewer may choose to edit the 

review description and headline before posting it. Similar to reviews in the 

recommendable list, the reviews in the non-recommendable list may be displayed to warn 

reviewers on how not to write a review. Below Figure 5.12 shows the interface of top 20 

non-helpful reviews.  
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Figure 5.12: Interface displaying top 20 non-helpful reviews in the non-recommendable list in right panel 

Figure 5.12 does not have “Copy” button i.e., reviewers cannot copy non-helpful reviews 

but they can read through all of them.  

The review recommendation software should be able to track how reviewers used the 

recommendable and non-recommendable reviews in order to better understand the user 
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preferences. For example, if reviewers edited the recommended review before posting or 

not. This could be an interesting future work and we will cover it in detail in Chapter 6.  
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Chapter 6                  
Conclusions & Future 

Work 
 

In this chapter, we summarize the findings of this thesis and then overview ideas for 

future work. Section 6.1 will review the conclusions and Section 6.2 will present ideas 

for future work. 

6.1  Conclusions 

In this Thesis, we investigated an Amazon.com database of 2.3 million reviewers to 

understand their reviewing skills and how those skills changed over time. Their 

reviewing skill was observed based on their reviews in nine different product categories 

such as Books, Electronics, Cellphones and accessories, Grocery and gourmet food, 

Office product, Health and personal care, Baby, Beauty, and Pet supplies. We then 

proposed a review recommendation framework to train reviewers to better write about 

their experiences with the product by leveraging the behaviors of expert reviewers who 

are good at writing helpful reviews. Specifically, in Chapter 4, we used X-means 

clustering technique to model reviewers into different classes based on their review 

quality. Also in Chapter 4, we used classification approaches to investigate how reviews 

are perceived differently across different product categories. We then analyzed how 

different classes of reviewer evolve over time in regard to their reviewing skill in Chapter 

5. Also in Chapter 5, we proposed review recommendation system framework that is 

based on the reviewer evolution to generate review recommendations that help train 
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reviewer to write better quality review. We can make several conclusions based on the 

following key findings of this Thesis: 

Finding 1.  Reviewers have different skill levels for posting quality reviews. Reviewers 

may differ in their expertise level such as expert, novice, etc. based on the quality of their 

reviews. The expertise levels reflect the ability of a reviewer to write quality review, 

which is measured by the number of up-votes the review receives from customers. 

Amazon uses “helpfulness” as the primary way of measuring consumers’ evaluation of a 

review. Therefore, expertise level of each reviewer class is determined by their reviews 

quality i.e. helpfulness. Reviewers at different expertise level need different kind of 

training to write quality reviews. Therefore, recommendations are personalized to fit the 

expertise level of reviewers.  

Finding 2.  Reviews are valued differently across different product categories. Through 

machine learning based classification techniques, we identified the salient review features 

for different product categories. Using decision tree for classification we found the 

features that differentiated reviewer classes from one another. Understanding which 

review feature played important role to perform classification helped us find the features 

that are more important than other. As stated in Chapter 4, for products associated with 

prevention consumption goal such as Health and personal care, Grocery and gourmet 

food, Baby, Beauty, and Pet supplies longer reviews are perceived to be more helpful; 

and for products associated with promotion consumption goal such as Books, Cellphones 

and accessories, Electronics, and Office products positive reviews are more helpful than 

negative ones. These findings showed that reviews are perceived differently across 
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different product categories. We use this finding to make effective recommendations by 

generating product specific review recommendations.  

Finding 3.  Reviewers evolve over time. For some reviewers, evolution indicated 

improvement in their reviewing skills whereas for others it indicated the opposite. The 

actions performed by an expert reviewer can be recommended to reviewers with lower 

reviewing skills. We used this finding to recommend the actions of expert cluster, which 

improves quickly to novice or conscientious cluster, which grow slowly or remain 

constant. Based on reviewer evolution trend we proposed a review recommendation 

framework that can help a novice or conscientious reviewer to become an expert 

reviewer.  

Review recommendation framework aims at improving the reviewing skill of a 

reviewer and therefore computes reviewer-reviewer similarity, based on the similarity 

between their evolution rates. To improve the reviewing skill of reviewers with lesser 

reviewing expertise, we calculate conscientious- expert similarity or novice- expert 

similarity to compute their closeness. The reviews posted by the closest experts are 

recommended to the reviewer. We verified that for a random conscientious reviewer, at 

least 80% of the reviews posted by closest experts were of higher quality than that of the 

conscientious reviewer. Therefore, our recommendation system framework 

recommends the reviews that are of better quality than that of reviewer’s. 

Additionally, it will also warn the reviewer on how not to review by displaying the list of 

reviews that will likely decrease reviewer’s skill. Hence the framework not only trains a 

reviewer on how to improve their review quality but also warns the reviewer on how to 

avoid the mistakes that may decrease their review quality.  
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6.2  Future Work 

Future work can center on multiple facets: 

 Designing recommendation software and data recording such that explicit 

feedback can be used to create future models.  

 Enhancing reviewer-expert similarity based on elaborate reviewer and product 

profiling into the future version.  

 Maturing recommendation framework by diversifying recommendations. 

6.2.1 Designing recommendation software  

In future work, we can develop software to implement the framework that we have 

proposed. Unlike traditional recommendation systems that suggest products such as 

movies, books, news, videos, and so on, the review recommendation system is very 

unique. Review recommendation software needs to be equipped with displaying the 

recommendations in a user-friendly manner such that reviewer feel motivated to read 

through the list of recommendations before settling to use one of them. Section 5.3.2 in 

Chapter 5 presents some ideas for designing the software. There are multiple ways a 

reviewer could use the recommended reviews such as 1) post the recommended review as 

it is, 2) make minor changes to the recommended review before posting, 3) make use of 

multiple recommendations to create one single review for posting, and 4) not use 

recommendations at all. Reviewers are free to adapt any of the above methods or their 

combinations to write their review.  

The task of developing review recommendation software will face the 

challenge of tracking how the reviewer used the recommendations. Combination of 

implicit and explicit evaluations of recommended reviews can be used to track how 
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reviewer used the recommendations. Current state-of-art indicates that there are mainly 

three different ways to get explicit feedback— (1) like/dislike, (2) ratings, and (3) text 

comments (Shapira et al., 2011). Review recommendation software can also use any of 

the above explicit feedback method to collect reviewers feedback.  Additionally, implicit 

feedback technique for example button click, cursor hover, etc. may be used for keeping 

track of how many recommendations reviewers read through and which they liked. 

Further text match technique between the posted review and recommended review may 

be used to find which recommendations the reviewer used to post his or her review. 

6.2.2 Enhancing reviewer-expert similarity 

Reviewer-expert similarity enhancement is an interesting area for future work. Recall that 

in Section 5.3.1.1.1 in Chapter 5 we computed reviewer-expert similarity based on the 

evolution trend. The evolution was calculated on an annual basis in Section 5.1 in 

Chapter 5. In a future version, the evolution trend may be calculated on a monthly scale 

for finer estimation of evolution. This may result in more precise and accurate estimation 

of reviewer-reviewer similarity, which could improve review generation process.  

Another way to enhance reviewer-expert similarity is by incorporating more detailed 

reviewer and product profiles. Recall that in Chapter 4, the reviewer profiles were 

centered on the reviews they had posted such as review length; reviewing frequency; 

review helpfulness and so on. Adomavicius et al., (2005) have pointed that user profiles 

can include various user-specific characteristics such as age, gender, income, marital 

status, etc. The inclusion of these characteristics in the reviewer profile can produce 

effective recommendations for example the review posted by an expert with similar 

annual household income may be more effective to a reviewer than the review posted by 
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an expert with dissimilar income. Also, the inclusion of these characteristics can make 

reviewer modeling more meaningful leading to an effective recommendation generation.  

Recall that the product feature in this thesis is limited to its categories such as 

Books, Baby, Grocery and gourmet foods, etc. Apart from this feature, product for 

example books can have other features such as price, title, genre, year of publication, 

author(s) and so on. Product profile can be created using aforementioned information and 

can be linked to the reviewer. Inclusion of product profiles would enhance reviewer- 

expert similarity calculation process and in turn enhance recommendation generation 

process. The review posted by an expert who has the same taste in books as the reviewer 

has a higher probability of being effective than the review posted by some other expert. 

6.2.3 Diversifying recommendation generation 

“Diversity is often a highly desirable feature in recommender systems” (Adomavicius et 

al., 2005). Diversification of recommendations through advanced filtering is an 

interesting future work. The past works of Zhang et al., (2010) and Adomavicius et al., 

(2005) can be starting point to implement this. To diversify recommendation, the reviews 

that are too similar to the reviews that the reviewer has already seen (in the 

recommendable list) should not be recommended, for example, different reviews 

describing the same feature of the product. Again the reviews that are too different must 

be filtered out from the recommendable list, as they may be describing an entirely 

different product (although in the same product category). In Books category, it may not 

be a good idea to recommend review describing science fiction novels to a reviewer who 

wants to review autobiography. The recommendable list must have a balance between 

reviews that are similar and yet different. For example, reviews that have diverse contents 
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and writing style, reviews that talk about multiple diverse features of the similar products, 

reviews that have both positive and negative feedbacks and so on. The reviewer should 

be able to see varieties in the recommended reviews.   
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Chapter 7                  
Appendices 
 

There are seven appendices. In Appendix A Amazon review data is presented to highlight 

the before and after of data cleaning process. The data cleaning process was carried to 

remove data imbalance as well as inactive reviewers. Appendix B shows detail statistics 

of each clusters after X-means clustering was performed. Appendices C and D contain 

J48 decision trees and confusion matrices after performing 10-fold cross validation 

respectively. Appendix E shows how each reviewer class evolves over time. Appendix F 

shows the results of sentiment analysis i.e., correlation between helpfulness and review 

tone; and overall and review tone. Finally, Appendix G shows the data structure of 

review and reviewer class. 

A. Data cleaning 

The trend of data for seven products categories is plotted to see how they change over 

time. Graphs contain review count; user count and product count in log with respect to 

time in month. If there is any data imbalance (such as abrupt change), the data is cleaned 

to address data imbalance. 

Electronics 

Amazon electronics review data contains reviews from 1998 to 2014. Below is a graph of 

review count; user count and product count in log with respect to time in month.  
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Figure 7.1: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Electronics” category 

As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2003 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2003 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2003 to 2013.  

 
Figure 7.2: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Electronics” category 

After cleaning, amazon electronics review data from Jan 2003 to Dec 2013 looks more 

gradual.  
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Amazon cellphones and accessories review data contains reviews from 1991 to 2014. 

Below is a graph of review count; user count and product count in log with respect to 

time in month.  

 
Figure 7.3: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Cellphones & accessories” category 

As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2003 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2003 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2003 to 2013.  

 

Figure 7.4: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Cellphones & accessories” category 
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After cleaning, amazon cellphones and accessories review data from Jan 2003 to Dec 

2013 looks more gradual.  

Grocery and gourmet food 

Amazon grocery and gourmet food review data contains reviews from 2000 to 2014. 

Below is a graph of review count; user count and product count in log with respect to 

time in month.  

 

Figure 7.5: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Grocery & gourmet food” category 

As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2004 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2004 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2004 to 2013. 
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Figure 7.6: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Grocery & gourmet food” category 

After cleaning, amazon grocery and gourmet food data from Jan 2004 to Dec 2013 looks 

more gradual.  

Health and personal care 

Amazon health and personal care review data contains reviews from 1998 to 2014. Below 

is a graph of review count; user count and product count in log with respect to time in 

month.  
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Figure 7.7: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Health & personal care” category 

As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2003 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2003 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2003 to 2013. 

 

Figure 7.8: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Health & personal care” category 
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After cleaning, amazon health and personal data from Jan 2003 to Dec 2013 looks more 

gradual. We will repeat this process for amazon office products review data.  

Office products  

Amazon office products review data contains reviews from 1998 to 2014. Below is a 

graph of review count; user count and product count in log with respect to time in month.  

 
Figure 7.9: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Office product” category 

As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2002 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2002 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2002 to 2013. 
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Figure 7.10: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Office product” category 

After cleaning, amazon office product data from Jan 2002 to Dec 2013 looks more 

gradual as seen in above graph.  

Baby 

 
Figure 7.11: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Baby” category 

As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2002 to 2013 is more consistent and gradually 
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increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2002 to 2013.  

Below is the graph that shows review count; user count and product count in log with 

respect to time in month from year 2002 to 2013. 

 

 
Figure 7.12: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Baby” category 

After cleaning, amazon baby product data from Jan 2002 to Dec 2013 looks more gradual 

as seen in above graph.  
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Figure 7.13: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Beauty” category 
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As we can see in the above graph, the data is imbalanced, growing exponentially before 

year 2000. However, the growth from 2002 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2002 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2002 to 2013. 

 

 
Figure 7.14: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Beauty” category 

After cleaning, amazon beauty product data from Jan 2002 to Dec 2013 looks more 

gradual as seen in above graph.  
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Figure 7.15: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) before cleaning the data in “Pet supplies” category 

As we can see in the above graph, the data is unbalanced, growing exponentially before 

year 2000. However, the growth from 2002 to 2013 is more consistent and gradually 

increasing. So we choose to remove data that was exponentially increasing and keep 

balanced data from year 2002 to 2013. Below is the graph that shows review count; user 

count and product count in log with respect to time in month from year 2002 to 2013. 

 

 
Figure 7.16: Graph showing the distribution of Review Count, User Count and Product Count  (in log scales) 

with respect to Date (YYYYMM) after cleaning the data in “Pet supplies” category 
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After cleaning, amazon pet supplies data from Jan 2002 to Dec 2013 looks more gradual 

as seen in above graph.  

Data cleaning to remove large proportion of inactive users 

 There is a large number of users who are active for very few months that makes it harder 

to find their characteristics to understand their reviewing pattern. To remove these 

inactive users from consideration, we identify the threshold value on number of months 

that differentiates between active and inactive users. We observe the number of users 

active over time and how the user count changes in all seven-product categories and then 

remove inactive users.  

Electronics 

Below is the table that contains top 15 values of active month count, user count and the 

slope of user count. The slope indicates the rate at which user count is increasing or 

decreasing with respect to month count for amazon electronics review data. 

Month Count User Count Slope 

1 2639358 13340 

2 444015 2962.1 

3 144304 1196.2 

4 62058 614.75 

5 31363 361.05 

6 17384 230.7 

7 10510 157.49 

8 6662 112.49 

9 4518 83.63 

10 3119 63.6 

11 2197 49.57 

12 1635 39.63 

13 1185 32.03 

14 913 26.64 

15 697 22.45 

Table 7.1: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Electronics” category 

From the values of the slope in Table 2, we can observe that the graph descends abruptly 

till active month is 4 and descends gradually after that i.e. the number of users who are 
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active for 4 months or more are more-or-less linear with respect to active months. Also 

from the table 1, we see that the number of users who are active for 3 months or less 

grow (or shrink) almost exponentially.  

Below is the graph of user count in log with respect to month count before and after 

removing users active for 4 month: 

 
Figure 7.17: User count vs. Month count before 

removing users active for less than 4 month in 

“Electronics” category 

 
Figure 7.18: User count vs. Month count after 

removing users active for less than 4 month in 

“Electronics” category 

Looking at the above graphs we can say that the active user count is balanced after 

removing the users active for less than 4 month. We will repeat this process for amazon 

cellphones and accessories review data. 

Cellphones and accessories 

Below is the table that contains top 15 values of active month count, user count and the 

slope of user count. The slope indicates the rate at which user count is increasing or 

decreasing with respect to month count for amazon cellphones and accessories review 

data. 

Month Count User Count Slope 
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10 366 32.72 

11 233 24.3 

12 180 19.4 

13 112 13.71 

14 84 10.91 

15 62 8.2 

Table 7.2: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Cellphones & accessories” category 

From the values of the slope in table 3, we can observe that the graph descends abruptly 

till active month is 4 and descends gradually after that i.e. the number of users who are 

active for 4 months or more are more-or-less linear with respect to active months. Also 

from the table 1, we see that the number of users who are active for 3 months or less 

grow (or shrink) almost exponentially.  

Below is the graph of user count with respect to month count before and after removing 

users active for 4 month: 

 

 
Figure 7.19: User count vs. Month count before removing 

users active for less than 4 month in “Cellphones & 

accessories” category 

 
Figure 7.20: User count vs. Month count after 

removing users active for less than 4 month in 

“Cellphones & accessories” category 
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removing the users active for less than 4 month. We will repeat this process for amazon 
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decreasing with respect to month count for amazon grocery and gourmet food review 

data. 

Month Count User Count Slope 

1 486220 4836.5 

2 60398 802.35 

3 17071 291.74 

4 6710 146.13 

5 3467 89.67 

6 2040 60.52 

7 1264 43.28 

8 858 32.84 

9 591 25.84 

10 445 21.37 

11 353 18.12 

12 273 15.5 

13 220 13.71 

14 204 12.46 

15 198 11.6 

Table 7.3: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Grocery & gourmet food” category 

From the values of the slope in table 4, we can observe that the graph descends abruptly 

till active month is 3 and descends gradually after that i.e. the number of users who are 

active for 3 months or more are more-or-less linear with respect to active months. Also 

from the Table 3, we see that the number of users who are active for 2 months or less 

grow (or shrink) almost exponentially. Below is the graph of user count with respect to 

month count before and after removing users active for 3 month: 
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Figure 7.21: User count vs. Month count before 

removing users active for less than 3 month in “Grocery 

& gourmet food” category 

 
Figure 7.22: User count vs. Month count after 

removing users active for less than 3 month in 

“Grocery & gourmet food” category 

 

Looking at the above graphs we can say that the active user count is balanced after 

removing the users active for less than 4 month. We will repeat this process for amazon 

health and personal care review data. 

Health and personal care 

Below is the table that contains top 15 values of active month count, user count and the 

slope of user count. The slope indicates the rate at which user count is increasing or 

decreasing with respect to month count for amazon health and personal care review data. 

Month count User count Slope 
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7 2093 28.23 

8 1315 20.21 

9 810 15.17 

10 610 12.26 

11 480 10.022 

12 337 8.16 

13 234 6.95 

14 210 6.28 

15 192 5.59 

Table 7.4: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Health & personal care” category 
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From the values of the slope in Table 5, we can observe that the graph descends abruptly 

till active month is 3 and descends gradually after that i.e. the number of users who are 

active for 3 months or more are more-or-less linear with respect to active months. Also 

from the table 3, we see that the number of users who are active for 2 months or less 

grow (or shrink) almost exponentially.  

Below is the graph of user count with respect to month count before and after removing 

users active for 3 month: 

 

 

Figure 7.23: User count vs. Month count before 

removing users active for less than 3 month in “Health 

& personal care” category 

 
Figure 7.24: User count vs. Month count after 

removing users active for less than 3 month in 

“Health & personal care” category 
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removing the users active for less than 3 month. We will repeat this process for amazon 
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Office product 

Below is the table that contains top 15 values of active month count, user count and the 

slope of user count. The slope indicates the rate at which user count is increasing or 

decreasing with respect to month count for amazon office products review data. 
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2 58353 534.05 
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5 1935 35.65 

6 1013 22.89 

7 604 16.44 

8 397 12.8 

9 265 10.6 

10 245 9.44 

11 195 8.06 

12 141 6.94 

13 124 6.32 

14 120 5.69 

15 95 4.74 

Table 7.5: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Office product” category 

From the values of the slope in Table 6, we can observe that the graph descends abruptly 

till active month is 3 and descends gradually after that i.e. the number of users who are 

active for 3 months or more are more-or-less linear with respect to active months. Also 

from the table 3, we see that the number of users who are active for 2 months or less 

grow (or shrink) almost exponentially.  

Below is the graph of user count with respect to month count before and after removing 

users active for 3 month: 

 

Figure 7.25: User count vs. Month count before 

removing users active for less than 3 month in “Office 

product” category 

 
Figure 7.26: User count vs. Month count after 

removing users active for less than 3 month in “Office 

product” category 

Looking at the above graphs we can say that the active user count is balanced after 

removing the users active for less than 3 month.  
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Below is the table that contains top 15 values of active month count, user count and the 

slope of user count. The slope indicates the rate at which user count is increasing or 

decreasing with respect to month count for amazon beauty review data. 

Month count User count Slope 
1 749246 21194 

2 87353 3316.2 

3 23443 1142 

4 8787 536.12 

5 4157 303.81 

6 2190 189.53 

7 1240 128.18 

8 811 95.702 

9 557 73.714 

10 384 57 

11 268 45 

12 198 38.5 

13 156 37.5 

14 122 41 

15 81  

Table 7.6: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Beauty” category 

Below is the graph of user count with respect to month count before and after removing 

users active for 3 month: 

 

Figure 7.27: User count vs. Month count before removing 

users active for less than 3 month in “Beauty” category 

 
Figure 7.28: User count vs. Month count after 

removing users active for less than 3 month in 

“Beauty” category 
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Month count User count Slope 
1 466973 13383 

2 60079 2299.7 

3 16428 810.16 

4 6379 387.72 

5 3030 215.76 

6 1406 126.58 

7 834 87.867 

8 557 63.69 

9 303 42.357 

10 205 33.486 

11 143 28 

12 112 25.8 

13 73 20 

14 52 19 

15 33  

Table 7.7: Distribution of User count, with respect to their active month (i.e. number of month they have posted 

a review) in “Pet supplies” category 

Below is the graph of user count with respect to month count before and after removing 

users active for 3 month: 

 

Figure 7.29: User count vs. Month count before 

removing users active for less than 3 month in 

“Pet supplies” category 

 
Figure 7.30: User count vs. Month count after removing 

users active for less than 3 month in “Pet supplies” category 

 

 

B. Data clustering 

Table below show detail statistics of all features for each cluster in terms of minimum, 

maximum, mean, and standard deviation values in all seven-product categories. 

Electronics 

 

0

200000

400000

600000

800000

1 4 7 10 13

U

s

e

r

c

o

u

n

t

Month count

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 101112

U

s

e

r

c

o

u

n

t

Month count



www.manaraa.com

 174 

Cluster Mean total review 

count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 7.502 4 261 6.080 

C2 9.548 4 489 11.098 

C3 9.197 4 178 8.1370 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 746.024 98 6978.75 551.94 

C2 735.983 83.667 14690.333 632.023 
C3 512.683 79.857 5374.833 397.094 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 2.968 1 3.75 0.561 

C2 4.3908 3.375 5 0.406 

C3 4.349 3 5 0.418 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 5.798 4 80 3.248 

C2 6.268 4 105 4.478 

C3 5.856 4 74 3.587 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.714 0 1 0.146 

C2 0.852 0.704 1 0.080 

C3 0.600 0 0.734 0.107 

Table 7.8: Statistics of feature set in different clusters for “Electronics” category 

Cellphones and accessories 

Cluster Mean total review 

count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 6.784 4 54 3.527 

C2 7.851 4 117 5.791 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 562.059 98.250 7351.333 494.669 

C2 537.654 96.5 12010 560.721 
Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 3.211 1 4.5 0.556 

C2 4.392 3.5 5 0.379 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 4.93 4 25 1.713 

C2 5.143 4 38 2.22 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.678 0 1 0.169 

C2 0.769 0 1 0.147 

Table 7.9: Statistics of feature set in different clusters for “Cellphones and accessories” category 

Health and personal care 
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Cluster Mean total review 

count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 6.234 3 295 7.948 

C2 5.368 3 136 4.901 

C3 6.684 3 297 7.362 

C4 6.342 3 147 6.993 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 556.852 74 18288.337 475.565 

C2 598.995 98.333 9027.75 455.338 

C3 352.357 72 4954.5 261.466 

C4 415.873 77.5 5731.5 311.301 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 4.569 3.75 5 0.366 

C2 3.090 1 3.889 0.663 

C3 4.664 4.05 5 0.295 

C4 3.468 1 4.056 0.565 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 4.421 3 72 3.200 

C2 4.221 3 58 2.603 

C3 4.358 3 61 2.944 

C4 4.477 3 52 3.421 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.632 0.43 1 0.143 

C2 0.610 0.31 1 0.143 

C3 0.238 0 0.443 0.129 

C4 0.247 0 0.454 0.124 

Table 7.10: Statistics of feature set in different clusters for “Health and personal care” category 

Grocery and gourmet food 
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Cluster Mean total review 

count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 8.862 3 247 11.486 

C2 7.359 3 513 13.893 

C3 7.158 3 364 8.984 

C4 7.245 3 224 9.813 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 428.211 43.4 4727.235 307.289 

C2 473.124 82.667 6244.250 366.497 
C3 318.656 74.333 6146.05 318.656 

C4 491.464 75.333 6724.667 366.688 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 3.641 1 4.333 0.481 

C2 4.596 3.333 5 0.381 

C3 4.707 4.067 5 0.279 

C4 3.24 1 4.176 0.666 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 5.944 3 57 5.282 

C2 4.808 3 82 4.244 

C3 4.583 3 60 3.324 

C4 5.085 3 60 4.224 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.186 0 0.407 0.114 

C2 0.654 0.417 1 0.148 

C3 0.234 0 0.45 0.133 

C4 0.515 0.167 1 0.132 

Table 7.11: Statistics of feature set in different clusters for “Grocery & gourmet food” category 

Office products 
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Cluster Mean total review 

count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 5.545 3 103 5.49 

C2 4.266 3 60 2.409 

C3 6.08 3 167 5.713 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 764.199 83 16312 699.689 

C2 717.387 79.5 6517.333 576.397 

C3 442.537 77.5 6326.533 360.158 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 4.398 3.25 5 0.473 

C2 2.652 1 3.667 0.657 

C3 4.368 2.25 5 0.553 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 4.448 3 51 3.268 

C2 3.765 3 27 1.617 

C3 4.657 3 57 3.500 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.661 0.438 1 0.158 

C2 0.539 0 1 0.204 

C3 0.213 0 0.445 0.136 

Table 7.12: Statistics of feature set in different clusters for “Office product” category 

Baby 
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Cluster Mean total 

review count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 8.193 4 40 4.13 

C2 11.195 4 98 8.429 

C3 9.602 4 89 6.126 

C4 8.41 4 55 5.114 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 
648.17 136.632 3109.95 

 
385.613 
 

C2 679.791 143.4 2827.429 357.196 
C3 432.561 102.4 2684.375 236.848 

C4 1035.95 192.077 6048.8 641.918 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 3.284 1.167 3.9 0.465 

C2 4.394 3.625 5 0.322 

C3 4.413 3.286 5 0.383 

C4 3.579 2.154 5 0.524 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 5.272 4 22 1.779 

C2 6.144 4 28 3.117 

C3 4.939 4 15 1.413 

C4 5.688 4 36 2.621 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.327 0 0.77 0.129 

C2 0.589 0.32 0.73 0.83 

C3 0.137 0 0.28 0.081 

C4 0.68 0.45 1 0.117 

Table 7.13: Statistics of feature set in different clusters for “Baby” category 

 

Beauty 
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Cluster Mean total 

review count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 6.652 3 303 8.565 

C2 6.497 3 368 8.485 

C3 7.149 3 150 7.384 

C4 6.954 3 241 8.005 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 523.868 78.33 7931 412.313 

C2 569.676 89.667 8615 424.128 

C3 332.453 67 4122.75 237.288 

C4 395.392 77 3676.5 273.945 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 4.596 3.8 5 0.346 

C2 3.274 1 4.009 0.601 

C3 4.654 4.048 5 0.299 

C4 3.452 1 4.071 0.555 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 4.326 3 82 2.884 

C2 4.366 3 50 2.735 

C3 4.137 3 44 2.277 

C4 3.452 3 48 2.593 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.644 0.43 1 0.145 

C2 0.605 0.36 1 0.14 

C3 0.233 0 0.44 0.134 

C4 0.239 0 0.44 0.128 

Table 7.14: Statistics of feature set in different clusters for “Beauty” category 

 

 

Pet supplies 
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Cluster Mean total 

review count 

Min total review 

count 

Max total review 

count 

Standard 

deviation 

C1 6.187 3 192 6.237 

C2 5.595 3 74 4.436 

C3 6.459 3 136 5.385 

C4 6.154 3 86 5.121 

Cluster Mean average 

review length 

Min average 

review length 

Max average 

review length 

Standard 

deviation 

C1 
622.663 84.75 8277.5 

 
464.249 
 

C2 671.242 103.33 10188 519.079 

C3 380.454 74.5 3208 257.954 

C4 435.547 88 4049.333 302.973 

Cluster Mean average 

overall 

Min average 

overall 

Max average 

overall 

Standard 

deviation 

C1 4.519 3.75 5 0.373 

C2 3.134 1 3.889 0.604 

C3 4.663 4.063 5 0.293 

C4 3.526 1 4.091 0.507 

Cluster Mean total active 

month 

Min total active 

month 

Max total active 

month 

Standard 

deviation 

C1 4.336 3 49 2.609 

C2 4.118 3 33 2.144 

C3 3.987 3 31 1.768 

C4 4.003 3 35 1.971 

Cluster Mean average 

helpfulness 

Min average 

helpfulness 

Max average 

helpfulness 

Standard 

deviation 

C1 0.631 0.41 1 0.15 

C2 0.613 0.3 1 0.154 

C3 0.208 0 0.43 0.135 

C4 0.214 0 0.43 0.13 

Table 7.15: Statistics of feature set in different clusters for “Pet supplies” category 

 

 

C. Data classification- J48 pruned decision tree 

Figures below show top three levels of J48 decision trees for all seven-product categories. 

Electronics 
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Figure 7.31: First three level of J48 pruned tree of “Electronics” category 

Cellphones and accessories 

 

 
Figure 7.32: First three level of J48 pruned tree of “Cellphones and accessories” category 

Health and personal care 
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Figure 7.33: First three level of J48 pruned tree of “Health & personal care” category 

 

Grocery and gourmet food  

 
 

Figure 7.34: First three level of J48 pruned tree of “Grocery & gourmet foods” category 

Office products 

 



www.manaraa.com

 183 

 
Figure 7.35: First three level of J48 pruned tree of “Office product” category 

 

Baby 

 
 

 

 
Figure 7.36: First three level of J48 pruned tree of “Baby” category 

Beauty 
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Figure 7.37: First three level of J48 pruned tree of “Beauty” category 

 

Pet supplies 

 
Figure 7.38: First three level of J48 pruned tree of “Pet supplies” category 

 

D. Data classification- Confusion Matrix 

Tables below show confusion matrices after performing10-fold cross validation in all 

seven-product categories. 

Electronics 
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Classified as Cluster1 Cluster2 Cluster3 
Cluster1 33044 20 63 

Cluster2 32 70375 88 

Cluster3 59 82 42394 

Table 7.16: Confusion matrix for “Electronics” category 

Cell phones and accessories 

Classified as Cluster1 Cluster2 
Cluster1 7706 34 

Cluster2 36 13910 

Table 7.17: Confusion matrix for “Cellphones and accessories” category 

Grocery and gourmet food 

 

Classified as Cluster1 Cluster2 Cluster3 Cluster4 
Cluster1 6699 0 30 27 

Cluster2 0 9265 17 16 

Cluster3 33 12 13472 4 

Cluster4 22 17 7 5090 

Table 7.18: Confusion matrix of “Grocery & gourmet food” category 

 

Health and personal care 

Classified as Cluster1 Cluster2 Cluster3 Cluster4 
Cluster1 20251 18 12 3 

Cluster2 7 9697 0 15 

Cluster3 15 0 25090 2 

Cluster4 4 19 1 15535 

Table 7.19: Confusion matrix of “Health & personal care” category 

Office product 

Classified as Cluster1 Cluster2 Cluster3 
Cluster1 12998 3 14 

Cluster2 7 6696 13 

Cluster3 14 14 3453 

Table 7.20: Confusion matrix of “Office product” category 

Baby 

Classified as Cluster1 Cluster2 Cluster3 Cluster4 
Cluster1 1104 14 11 12 

Cluster2 15 1792 30 36 

Cluster3 7 25 1967 0 

Cluster4 13 41 0 966 

Table 7.21: Confusion matrix of “Baby” category 

Beauty 

Classified as Cluster1 Cluster2 Cluster3 Cluster4 
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Cluster1 12116 16 5 1 

Cluster2 14 6702 0 36 

Cluster3 9 0 6702 8 

Cluster4 0 13 6 9097 

Table 7.22: Confusion matrix of “Beauty” category 

Pet supplies 

Classified as Cluster1 Cluster2 Cluster3 Cluster4 
Cluster1 7707 6 10 7 

Cluster2 7 4021 0 12 

Cluster3 5 0 11380 8 

Cluster4 7 13 4 6529 

Table 7.23: Confusion matrix of “Pet supplies” category 

E. User Evolution 

Here we report on our change analysis of helpfulness for all seven-product categories. 

For each class, we calculate the average helpfulness of all reviews written by reviewers 

belonging to the particular class with respect to time (in year). The average helpfulness of 

all classes of reviewers in all seven-product categories are drawn below. 

Electronics 

There are three classes of reviewers in Electronics: 1) conscientious, 2) expert, and 3) 

novice.  

 
Figure 7.39: Trend of average helpfulness over time for three clusters in "Electronics" category 

Cellphones and accessories 
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There are two classes in Cellphones and accessories: 1) conscientious, and 2) expert. For  

 
Figure 7.40: Trend of average helpfulness over time for three clusters in "Cellphones and accessories" category 

Office product 

There are three classes of reviewers in Office products: 1) conscientious, 2) expert, and 3) 

novice.  

 
Figure 7.41: Trend of average helpfulness over time for three clusters in "Office product" category 

Grocery and gourmet food 

There are four classes of reviewers in Grocery and gourmet foods: 1) novice, 2) 

conscientious, 3) positive expert, and 4) negative experts.  
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Figure 7.42: Trend of average helpfulness over time for four clusters in "Grocery and gourmet food" category 

Health and personal care 

There are four classes of reviewers in Health and personal care: 1) novice, 2) 

conscientious, 3) frequent positive expert, and 4) non-frequent negative experts.  

 
Figure 7.43: Trend of average helpfulness over time for four clusters in "Health and personal care" category 

Baby 

There are four classes of reviewers in Baby: 1) novice, 2) conscientious, 3) frequent 

positive expert, and 4) non-frequent negative experts.  
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Figure 7.44: Trend of average helpfulness over time for four clusters in "Baby" category 

Beauty 

There are four classes of reviewers in Beauty: 1) novice, 2) conscientious, 3) positive 

expert, and 4) negative expert.  

 
Figure 7.45: Trend of average helpfulness over time for four clusters in "Beauty" category 

 

Pet supplies 

 

There are four classes of reviewers in Pet supplies: 1) novice, 2) conscientious, 3) 

frequent positive expert, and 4) non-frequent negative experts.  
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Figure 7.46: Trend of average helpfulness over time for four clusters in "Pet supplies" category 

 

F. Sentiment Analysis 

In this Section, for each reviewer class, we calculate correlation between review features 

such as average helpfulness, and average overall with review sentiments measured by 

positive intensity, negative intensity, and neutral intensity. 

  Helpfulness Overall 

Product 

Category Clusters Positive Negative Neutral Positive Negative Neutral 

Books C1 

(conscientious) 
-0.292 0.153 0.200 0.364 -0.373 -0.138 

C2 (expert) -0.288 0.111 0.243 0.243 -0.212 -0.145 

C3 (novice) -0.239 0.134 0.187 0.201 -0.197 -0.117 

Cellphones

& 

accessories 

C1 

(conscientious) 
-0.078 0.000 0.084 0.407 -0.421 -0.258 

C2 (expert) -0.061 -0.037 0.082 0.415 -0.450 -0.220 

Electronics C1 (novice) -0.085 0.017 0.067 0.338 -0.3169 -0.1140 

C2 (expert) -0.112 0.056 0.088 0.310 -0.309 -0.172 

C3 

(conscientious) 
-0.091 0.004 0.091 0.277 -0.273 -0.164 

Office 

product 

C1 (expert) -0.114 0.054 0.091 0.267 -0.273 -0.149 

C2 (novice) -0.013 -0.012 0.021 0.369 -0.319 -0.120 

C3 

(conscientious) 
-0.077 0.019 0.071 0.311 -0.292 -0.191 

Grocery & 

gourmet 

food 

C1 

(conscientious) 
-0.083 0.047 0.068 0.195 -0.194 -0.129 

C2 (novice) -0.081 0.015 0.072 0.314 -0.313 -0.148 

C3 (positive 

expert) 
-0.076 0.011 0.073 0.224 -0.193 -0.154 
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C4 (negative 

expert) 
-0.051 0.005 0.046 0.348 -0.322 -0.154 

Health & 

personal 

care 

C1 (frequent 

positive 

expert) 

-0.049 0.029 0.034 0.200 -0.129 -0.136 

C2 (non 

frequent 

negative 

expert) 

-0.056 -0.010 0.0595 0.300 -0.252 -0.116 

C3 

(conscientious) 
-0.083 0.060 0.056 0.174 -0.117 -0.123 

C4 (novice) -0.043 0.036 0.019 0.258 -0.266 -0.088 

Baby C1 (novice) -0.128 -0.001 0.128 0.338 -0.267 -0.195 

C2 (frequent 

positive 

expert) 

-0.039 0.029 0.029 0.263 -0.293 -0.155 

C3 

(conscientious) 
-0.069 -0.004 0.075 0.361 -0.351 -0.246 

C4 (non 

frequent 

negative 

expert) 

-0.016 0.0009 0.017 0.363 -0.373 -0.198 

Beauty C1 (positive 

expert) -0.2158 0.6379 -0.7200 0.3111 -0.4441 0.4241 

C2 (negative 

expert) -0.1665 0.8632 -0.7726 0.3404 -0.2955 0.1984 

C3 

(conscientious) -0.2056 0.8623 -0.6150 0.2976 -0.6270 0.3670 

C4 (novice) -0.1726 0.8180 -0.7357 0.3465 -0.3670 0.2517 

Pet 

supplies 

C1 (frequent 

positive 

expert) -0.1872 0.8630 -0.7534 0.3073 -0.5522 0.3910 

C2 (non 

frequent 

negative 

expert) -0.1466 0.8490 -0.8377 0.3477 -0.2980 0.2223 

C3 

(conscientious) -0.1863 0.8700 -0.6836 0.2722 -0.6377 0.4302 

C4 (novice) 

-0.1516 0.8042 

-

0.77892 0.3053 -0.3899 0.3093 

Table 7.24: Correlation between helpfulness and overall with respect to positive, negative, and neutral tone for 

each cluster. 

 

G. Class definition  

This Section contains the definition of review and reviewer class. 

Review class 

Class Review 

{ String author;                               // person who posted the review 

 String helpfulness;                  //current helpfulness of the review 
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 Integer score;      // add 1 for successful and -1 for unsuccessful recommendation 

Integer recommendationCount;                  // number of times the review has been 

                                                                       // recommended  

 Double rank;                                                           // denotes success rate of review 

} 

 

Reviewer class 

Class Reviewer 

{ Double avgHelpfulness;                     // average helpfulness of the reviewer 

Double previousAvgHelpfulness;     // average helpfulness of the reviewer before 

                                                            // reviewer was recommended 

 

List avgHelpfulnessList;                   // average helpfulness of the reviewer for  

                                                           // each active year  

 Integer score;       // add 1 for successful and -1 for unsuccessful recommendation 

Integer recommendationCount; // number of times a review posted by reviewer 

                                                                       // has been recommended  

 Double rank;                                                 // denotes success rate of reviewer 

} 
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